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1. Definitions and Notation

These notes will present some open problems dealing with an interplay between

regularity, compactness, and domination as well as the order structure of di�erent

classes of operators. Let us �rst recall that

Definition 1.1. If X and Y are vector lattices and T : X → Y is a linear

operator then:

(1) T is positive (in symbols, T > 0) if T (X+) ⊆ Y+.

(2) If T has the property that for every x ∈ X+ there is y ∈ Y+ such that

T ([−x, x]) ⊂ [−y, y] then T is termed order bounded.

(3) If there are positive operators U, V : X → Y such that T = U − V then T is

regular.

We denote the order bounded (resp. regular) operators from X into Y by

L b(X, Y ) (resp. L r(X,Y )). We always consider these spaces with the order induced

by the cone of positive operators: T > S if and only if T − S > 0. We always have

L r(X,Y ) ⊆ L b(X,Y ) and the inclusion can be proper. If X and Y are Banach

lattices then L (X, Y ) will denote the bounded linear operators from X into Y .

In this case, we always have L b(X, Y ) ⊆ L (X, Y ). In general not every bounded

operator need be regular, or even order bounded.

Example 1.2. For p ∈ [1,∞) there is a bounded linear operator T : Lp([0, 1]) →
c0 which is not regular.

▹ Let (rn) denote the sequence of Rademacher functions on [0, 1] and let
1
p
+ 1

q
= 1. De�ne an operator T : Lp([0, 1]) → c0 by Tx =

∑∞
n=1 rn(x) en, where

rn(x) =
∫ 1

0
rn(t)x(t) dt and en denotes the n'th standard basis vector in c0. The

Rademacher functions converge weak∗ to 0 when considered, as we do here, as

elements of Lp([0, 1])
∗ so that Tf ∈ c0. T is bounded as ∥Tx∥ = sup∞

n=1 |rn(x)| 6
sup∞

n=1 ∥rn∥q∥x∥p = ∥x∥p. Note that T (rn) = en for all n ∈ N and that T (r0) = 0,

because of orthogonality, so that T (r0 + rn) = en. As 0 6 r0 + rn 6 2r0, if we had

U > T, 0 then

U(2r0) > U(r0 + rn) > T (r0 + rn) = en

for all n ∈ N, which is inconsistent with U(2r0) lying in c0. It follows that T is not

regular after all. ◃
Two well known properties that vector lattices may or may not have are those

of being Dedekind complete (when every non-empty set that is bounded above has

a supremum) or Dedekind σ-complete (when non-empty countable sets that are

bounded above have a supremum). We need notions in between these two extremes.

Definition 1.3. Let α be an in�nite cardinal. A vector lattice X is Dedekind

α-complete (respectively Dedekind <α-complete) if every nonempty subset of X, of

cardinality at most (respectively less than) α and which is bounded above, must

have a supremum.
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For Banach lattices we have choices of topology that we can use to characterize

density conditions. In vector lattices we have the following notion:

Definition 1.4. Let X be a vector lattice. A sequence (xn) in X is relatively

uniformly convergent (uniformly convergent for short) to x ∈ X if there is x0 ∈ X

such that for all reals ε > 0 there is n0 ∈ N with the property that |xn−x| 6 εx0 for

all n > n0. Equivalently there is a sequence of reals εn ↓ 0 such that |xn−x| 6 εnx0.

A set D ⊂ X is relatively uniformly dense in X if every x ∈ X is the relative uniform

limit of a sequence of elements of D.

Definition 1.5. A sequence (xn) in a vector lattice E is said to be uniformly

Cauchy whenever there exists some 0 6 u ∈ E+ such that for each 0 < ε ∈ R we

have |xn − xm| 6 εu for all n,m ∈ N su�ciently large. A vector lattice space is

called uniformly complete whenever every uniformly Cauchy sequence is relatively

uniformly convergent.

A vector lattice is uniformly complete if and only if sup{
∑n

k=1 xk : n ∈ N} exists
for every uniformly bounded sequence (xn) in E+, see [55, 1.1.7 (v)]. (A sequence

(xn) in E+ is called uniformly bounded if x 6 ane for some e ∈ E+ and (an) ∈ ℓ1.)

Recall also some basic de�nitions concerning Banach lattices.

Definition 1.6. A Banach lattice X is said to have: the property (P ) if there

exists a positive contractive projection in X ′′ onto X [55, p. 47]; the Levi property

(or a Levi norm) if 0 6 xα ↑ and ∥xα∥ 6 1 imply that supα xα exists in X

[3, De�nition 7 (2)]; the Fatou property (or a Fatou norm) if 0 6 xα ↑ x implies

∥xα∥ ↑ ∥x∥ [3, De�nition 7 (3)]. A Banach lattice with the Levi (Fatou) property is

also called order semicontinuous (resp. monotonically complete) [55].

Let B(X) and P(X) stand respectively for the complete Boolean algebras of all

bands and all band projections in a vector lattice X. Throughout the sequel B is a

complete Boolean algebra with unit 1 and zero O, while Λ := Λ(B) is a Dedekind

complete AM -space with unit such that B ≃ P(Λ); in this event B and P(Λ) are
identi�ed with 1 taken as the unit element both in B and P(Λ). A partition of unity

in B is a family (bξ)ξ∈Ξ ⊂ B such that
∨

ξ∈Ξ bξ = 1 and bξ ∧ bη = O whenever ξ ̸= η.

For the theory of Banach lattices and positive operators we refer to the

books Abramovich and Aliprantis [2], Aliprantis and Burkinshaw [7], and Meyer-

Nieberg [55]. The needed information on the theory of Boolean-valued models

is brie�y presented in Kusraev [38, Chapter 9] and Kusraev and Kutateladze

[47, Chapter 1]; details may be found in Bell [12], Kusraev and Kutateladze [45],

Takeuti and Zaring [67]. We let := denote the assignment by de�nition, while N, Q,

and R symbolize the naturals, the rationals, and the reals.

2. Lattices of Regular Operators

The earliest results in this area date back to Kantorovich's 1936 paper [35]. Proofs

of this may be found in any text book on the subject.

Theorem 2.1. If X and Y are Archimedean vector lattices and Y is Dedekind

complete then L r(X,Y ) = L b(X, Y ) is a Dedekind complete vector lattice.
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Not only did he show that it is a lattice, he gave a formula for the lattice

operations. If T ∈ L r(X,Y ) and x ∈ X+ then T+(x) = supT ([0, x]), T−(x) =

supT ([−x, 0]), |T |(x) = supT ([−x, x]). More generally, if S, T ∈ L r(X, Y ) then

(S ∨ T )(x) = sup{S(y) + T (x) : y, z ∈ X+ and x = y + z}

and

(S ∧ T )(x) = inf{S(y) + T (x) : y, z ∈ X+ and x = y + z}.

These are known as the Freudenthal�Kantorovich�Riesz formulae.

There are several cases known where the conclusion of this theorem holds but

with a stronger condition on X and a weaker condition on Y . It isn't possible to

just weaken the condition on Y as Kantorovich's result is the best possible. This is

due to Abramovich and Gejler, [4].

Theorem 2.2. The following conditions on a vector lattice Y are equivalent:

(1) Y is Dedekind complete.

(2) For every vector lattice X, every order bounded operator from X into Y is

regular and L r(X, Y ) is a Dedekind complete vector lattice.

(3) For every vector lattice X every order bounded operator from X into Y is

regular and L r(X, Y ) is a vector lattice.

If we restrict the size of order intervals in X then we can weaken the assumption

on Y . For the case that α = ℵ0 it was proved in [5] that (1) implies (2), whilst (2)

implies (1) is in [4].

Theorem 2.3. Let α be an in�nite cardinal and Y a vector lattice, then the

following are equivalent:

(1) Y is Dedekind α-complete.

(2) If X is a vector lattice in which every order interval has a relatively uniformly

dense subset of cardinality at most α, then L b(X, Y ) = L r(X,Y ) is a Dedekind

α-complete vector lattice in which all the lattice operations are given by the

Freudenthal�Kantorovich�Riesz formulae.

Kantorovich's original result, along with Abramovich and Gejler's converse,

characterizes the best possible range spaces. At the opposite extreme is the following

result due to van Rooij ([60] or [61]) which characterizes the best possible domains.

Theorem 2.4. The following conditions on a vector lattice X are equivalent:

(1) Every principal ideal in X is �nite dimensional.

(2) For every vector lattice Y , L b(X, Y ) is a vector lattice.

Furthermore the lattice operations will be given by the Freudenthal�Kantorovich�

Riesz formulae and in fact in this case every linear operator from X into Y is regular.

There are other results which are similar. In all known cases we either have

a lattice in which all lattice operations are given by the Freudenthal�Kantorovich�

Riesz formulae, or we don't have a lattice at all. A major, and di�cult, open problem

in this area is:
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Problem 2.5: Is it true that if X and Y are Archimedean vector lattices such

that L r(X,Y ) is a vector lattice then the lattice operations in L r(X, Y ) all satisfy

the Freudenthal�Kantorovich�Riesz formulae?

In fact, ever since the beginnings of this subject it has been a signi�cant

question as to whether or not if X and Y are Archimedean vector lattices and

S, T ∈ L r(X, Y ) have a supremum then it is given by the Freudenthal�Kantorovich�

Riesz formula, although the question has only been explicitly posed fairly recently.

A recent, as yet unpublished, result of Michael Elliott has answered this question.

Namely, he has constructed an operator on L1([0, 1]) into a certain C(K) space

(constructed as a closed unital sublattice of ℓ∞) which has a modulus which is not

given by the Freudenthal�Kantorovich�Riesz formula. It is noteworthy that these

spaces are actually Banach lattices.

If we assume rather more, by working with Banach lattices rather than vector

lattices, then we can say rather more.

At one extreme we have:

Theorem 2.6 (van Rooij, [60]). The following conditions on a Banach lattice X

are equivalent:

(1) X is atomic with an order continuous norm.

(2) For every Banach lattice Y , L b(X,Y ) = L r(X, Y ) is a Banach lattice under

the regular norm in which the lattice operations are given by the Freudenthal�

Kantorovich�Riesz formulae.

(3) For every compact Hausdor� space K, L r
(
X,C(K)

)
is a vector lattice.

Whilst at the other extreme is:

Theorem 2.7. The following conditions on a Banach lattice Y are equivalent:

(1) Y is Dedekind complete.

(2) For every Banach lattice X, L b(X,Y ) is a Banach lattice under the regular

norm in which all lattice operations satisfy the Freudenthal�Kantorovich�Riesz

formulae.

(3) For every Banach lattice X, L r(X, Y ) is a vector lattice.

What we would really like is a condition on the pair (X, Y ) which tells us whether

or not L r(X, Y ) is a lattice. Whilst we are still some way from answering this

question completely, we can answer it given one of a number of natural restrictions

on X. For example:

Theorem 2.8. If X is a separable Banach lattice and Y is any Banach lattice

the following are equivalent:

(1) Either X is atomic with an order continuous norm or Y is Dedekind σ-comp-

lete.

(2) L b(X,Y ) is a Dedekind σ-complete Banach lattice under the regular norm

in which all lattice operations satisfy the Freudenthal�Kantorovich�Riesz formulae.

(3) L r(X, Y ) is a Banach lattice under the regular norm.

(4) L r(X, Y ) is a vector lattice.
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An interesting consequence applies when X = Y .

Corollary 2.9. If X is a separable Banach lattice then L r(X) is a vector lattice

if and only if X is Dedekind complete.

Problem 2.10: The next result depends on density character only of order

intervals in X rather than of X itself. For example, no matter how large the

index set I, order intervals in ℓ1(I) are separable even though ℓ1(I) itself has

density character card(I). Does the preceding theorem remain true under the weaker

hypothesis that every order interval in X is separable?

The reason that separability of X su�ces here is not directly connected with the

separability of order intervals in X. There is an important condition that van Rooij

identi�ed.

Definition 2.11. A Banach lattice has property (⋆) if, for every sequence (fn)

in X∗
+ which converges σ(X∗, X) to f ∈ X∗

+ as n → ∞, we have |fn − f | → 0 for

σ(X∗, X) as n → ∞.

There are two other de�nitions that are at �rst sight slightly weaker and which

might seem easier to verify in practise.

Definition 2.12. A Banach lattice has property (⋆⋆) if, for every sequence (fn)

in X∗ such that fn → f and with |fn| → h ∈ X∗ for σ(X∗, X) as n → ∞, we have

h = |f |.
Definition 2.13. A Banach lattice X has property (⋆⋆⋆) if, for every sequence

(fn) in X∗ such that fn → 0 and |fn| → h ∈ X∗ for σ(X∗, X) as n → ∞, we have

h = 0.

The only obvious examples of Banach lattices having any of these properties are

those which are atomic with an order continuous norm. So far, these are the only

examples!

Theorem 2.14 (Chen and Wickstead). Let X be a Banach lattice and consider

the following conditions.

(1) X is atomic with an order continuous norm.

(2) The lattice operations in X∗ are sequentially σ(X∗, X) continuous.

(3) X has property (⋆).

(4) X has property (⋆⋆).

(5) X has property (⋆⋆⋆).

It is always true that rm(i) ⇒ (ii) ⇔ (iii) ⇒ (iv) ⇒ (v). If X is Dedekind σ-comp-

lete or is separable or X = C0(Σ), where Σ is a locally compact Hausdor� space,

then all �ve conditions are equivalent.

Problem 2.15: Are these �ve conditions equivalent in general? Either an

a�rmative or a negative answer would be useful and interesting.

A positive solution would automatically mean a positive answer to Problem 2.10.

We can similarly obtain a complete answer if we assume instead that X has an

order continuous norm. This result depends on several, as yet, unpublished results

from Michael Elliott's Ph.D. thesis, [24].
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Theorem 2.16. Let X be a Banach lattice with an order continuous norm and Y

be any Banach lattice. The following are equivalent:

(1) Either X is atomic with an order continuous norm or Y is Dedekind α-comp-

lete where α is the smallest cardinal that is greater than the density character of

every order interval in X.

(2) L b(X, Y ) is a Banach lattice under the regular norm in which all lattice

operations satisfy the Freudenthal�Kantorovich�Riesz formulae.

(3) L r(X, Y ) is a vector lattice.

You might hope to simplify the statement of this theorem by changing the order

theoretic restriction on Y to being that it is β-complete where β is the smallest

cardinal that if greater than or equal to the density character of every order interval

in X. It turns out that such a simpli�cation is possible if and only if the set theoretic

hypothesis that there is no weakly inaccessible cardinal is true!

Problem 2.17: It is still an open question exactly when the space L r(X, Y ) is

a vector lattice. Our results so far suggest that this might be the case if and only if

either X is atomic with an order continuous norm or if Y is Dedekind α-complete

where α is the smallest cardinal that is greater than the density character of every

order interval in X. Prove or disprove! Notice that a consequence of this would be

that all lattice operations would be given by the Freudenthal�Kantorovich�Riesz

formulae.

3. Compactness and Regularity

We look �rst at the question of when all compact operators are regular. However,

we need to be clear about what we mean. Just like bounded operators in general,

compact operators need not be regular. More interestingly a compact operator T

may be regular, so that we can write T = U − V where U and V are positive

operators but without being able to choose U and V as also being compact. Indeed,

Krengel [37] showed that even in as nice a case as X = Y = ℓ2, when the space of

regular operators is a lattice, it is possible for T to be compact and have a modulus

which is not compact. It then follows from the Dodds�Fremlin theorem that it is

impossible to write T as the di�erence of two positive compact operators.

Definition 3.1. If X and Y are Banach lattices then K r(X,Y ) will denote the

linear span of K (X, Y )+, the cone of compact positive operators from X to Y .

So Krengel's example shows that K r(X,Y ) ̸= L r(X,Y ) ∩K (X,Y ) in general.

We have two questions that we can ask now. When is K (X, Y ) ⊆ L r(X, Y ) and

when is K (X, Y ) = K r(X,Y )? If we seek only a condition on either X or Y for

a guaranteed positive answer for all choices of the other space then we have complete

answers to both our possible questions.

Theorem 3.2 (Krengel, [37]; Cartwright and Lotz, [15]). The following condi-

tions on a Banach lattice X are equivalent:

(1) X is isomorphic to an AL-space.

(2) For every Banach lattice Y , every compact operator from X into Y is regular.
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(3) For every Banach lattice Y , K (X,Y ) is a vector lattice.

Theorem 3.3 (Krengel, [37]; Cartwright and Lotz, [15]). The following conditi-

ons on a Banach lattice Y are equivalent:

(1) Y is isomorphic to an AM-space.

(2) For every Banach lattice X, every compact operator from X into Y is regular.

(3) For every Banach lattice X, K (X,Y ) is a vector lattice.

Problem 3.4: There is no obvious conjecture as to when either K (X,Y ) ⊆
L r(X,Y ) or K (X,Y ) = K r(X,Y ) for a speci�ed pair (X,Y ).

Note, in particular combining the following result of Godefroy with an example

of Abramovich where L (X, Y ) is a lattice shows that we need have neither X being

isomorphic to an AL-space nor Y to an AM -space.

Proposition 3.5. Let X and Y be Banach lattices with Y Dedekind complete

and having the approximation property and suppose that K (X, Y ) ⊆ L r(X, Y )

then K (X, Y ) is a lattice.

Definition 3.6. We call T ∈ L (X,Y ) strongly non-regular if T is not in the

operator norm closure of the regular operators.

Arendt and Voigt, [10], showed that there are strongly non-regular operators in

L (Lp) provided 1 < p < ∞ and Lp is in�nite dimensional. Their examples are

necessarily not order bounded. In [72] Wickstead showed that it is possible even to

take X and Y being unital AM -spaces and T : X → Y being order bounded but

strongly non-regular.

Problem 3.7: Can compact operators be strongly non-regular? Note that all

�nite rank operators are regular, so this would imply that the range space failed to

have the approximation property.

The space L r(X,Y ) of regular operators is not usually complete under the

operator norm, but it is complete under the regular norm, ∥T∥r = inf{∥U∥ : U >
±T}. Similarly, K r(X, Y ) is not usually complete under the regular norm, but it

is under the k-norm, ∥T∥k = inf{∥U∥ : U > ±T, U ∈ K(X,Y )+}, see [18] and [17],

where we also show that the regular and k-norms are not often even equivalent to

each other.

Problem 3.8: Are there Banach lattices X and Y such that the regular and

k-norms are equivalent on K r(X, Y ) without being equal?

We know that for regular operators in general, it need not be the case that

|T |∗ = |T ∗|. To the best of our knowledge this question is still open:

Problem 3.9: If T ∈ K r(X, Y ) and T has a modulus, must |T |∗ = |T ∗|? What

if |T | itself is compact?
Note that Chen, [16], has given an example to show that |T ∗| can be compact

even if |T | is not.
Definition 3.10. The r-compact operators in L r(X, Y ) are those in the regular

norm closure of the �nite rank operators which will be denoted by A r(X, Y ).
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They are very well behaved and always form a vector lattice. It is always the case

that A r(X, Y ) ⊆ K r(X,Y ) and in general they are di�erent spaces. These have

been studied in [8, 20, 57, 58, 59, 75]. One problem about them seems di�cult.

Problem 3.11: If T is r-compact then T ∗ is certainly r-compact. If T ∈ L (X, Y )

and T ∗ ∈ A r(Y ∗, X∗) must we have T ∈ A r(X, Y )?

There is some evidence to conjecture a positive answer to the next question.

Problem 3.12: Is it true that if X is a Banach lattice such that both X and X∗

have an order continuous norm then A r(X) = K r(X) if and only if X were atomic?

4. Order Structure of Spaces of Compact Operators

Unlike the bounded operator case, where we do not know exactly when L (X, Y )

is a Banach lattice under the operator norm, the situation for compact operators is

completely clear. In the following result the proof when Y is an AM -space is due

originally to Krengel in [37], where he also obtained a partial proof for the case

that X is an AL-space. A complete proof for that case is given in [64]. The converse

is due to Cartwright and Lotz in [15].

Theorem 4.1. The following conditions on a pair of Banach lattices (X,Y ) are

equivalent:

(1) Either X is an AL-space or Y is an AM-space.

(2) K (X,Y ) is a Banach lattice under the operator norm.

Furthermore, in this case the lattice operations are given by the Freudenthal�

Kantorovich�Riesz formula.

However, the fact that the operator norm is a Banach lattice norm is crucial here.

We saw earlier that K (X, Y ) can be a lattice without either X being isomorphic

to an AL-space or Y to an AM -space.

It is probably very hard to answer:

Problem 4.2: For what pairs of Banach lattice X and Y is K (X, Y ) a vector

lattice?

What about the smaller space K r(X, Y )? The compact domination property

seems to be relevant here.

Definition 4.3. The pair of Banach lattices (X,Y ) has the compact domination

property if whenever S, T : X → Y , 0 6 S 6 T and T ∈ K (X,Y ) then

S ∈ K (X, Y ).

Theorem 4.4 (Dodds�Fremlin [23] and Wickstead [71]). If X and Y are Banach

lattices then the following are equivalent:

(1) One of the following three (non-exclusive) conditions holds:

(a) Both X∗ and Y have an order continuous norm.

(b) Y is an atomic Banach lattice with an order continuous norm.

(c) X∗ is an atomic Banach lattice with an order continuous norm.

(2) If S, T : X → Y , 0 6 S 6 T and T is compact then S is compact.
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If we ask for rather more than K r(X, Y ) being a lattice then our results are

complete. The following theorem is true when P is taken to mean �Dedekind

complete�, �Dedekind σ-complete� or �countable interpolation property�.

Theorem 4.5. If X and Y are Banach lattices then the following are equivalent:

(1) Y has (P ) and the pair (X, Y ) has the compact domination property.

(2) K r(X, Y ) is a vector lattice with (P ).

But for just being a lattice the results are incomplete:

Theorem 4.6. If the pair of Banach lattices (X,Y ) has the compact domination

property then K r(X, Y ) is a vector lattice.

But this does not include the cases where behaviour is nicest, namely when X is

an AL-space or Y an AM -space. So we ask:

Problem 4.7: For what pairs of Banach lattices X and Y is K r(X, Y ) a lattice?

Presumably these should be rather easier questions:

Problem 4.8: For what Banach lattices Y is K r(X,Y ) a lattice for all Banach

lattices X?

Problem 4.9: For what Banach lattices X is K r(X, Y ) a lattice for all Banach

lattices Y ?

Definition 4.10. An ordered vector space X has the Riesz separation property

if given x1, x2, z1, z2 ∈ X with x1, x2 6 z1, z2 there is y ∈ X with x1, x2 6 y 6 z1, z2.

X is said to have the Riesz decomposition property if given x, y1, y2 ∈ X with 0 6
x 6 y1+y2 there are x1, x2 ∈ X such that x = x1+x2, 0 6 x1 6 y1 and 0 6 x2 6 y2.

These two properties are equivalent and are satis�ed by any vector lattice.

Although we have examples where L r(X, Y ) has the RSP without being a lattice,

we have no examples in K r(X, Y ).

Problem 4.11: Either give an example of Banach lattices X and Y such that

K r(X,Y ) has the RSP without being a lattice or prove that such an example cannot

exist.

An interesting question of when the space of regular (or compact) operators is

itself an AL-space or AM -space was raised by Wickstead in [74]; we present four

results from this work.

Theorem 4.12 (Wickstead [74, Theorem 2.1]). If X and Y are Banach lattices,

neither of which is the zero space, with Y Dedekind complete then L r(X, Y ) is

an AL-space under the regular norm if and only if X is an AM -space and Y is an

AL-space.

▹ See Wickstead [74, Theorem 2.1]. ◃
Theorem 4.13. If Y is a nonzero Dedekind complete Banach lattice then

L r(X,Y ) is an AM -space under the regular norm for every AL-space X if and

only if Y is an AM -space with a Fatou norm.

▹ See Wickstead [74, Theorem 2.3]. ◃
Theorem 4.14. If X is a nonzero Banach lattices then L r(X, Y ) is an AM -space

under the regular norm for every Dedekind complete AM -space Y if and only if X

is an atomic AL-space.
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▹ See Wickstead [74, Theorem 2.4]. ◃
Theorem 4.15. If X and Y are nonzero Banach lattices, then the following hold:

(1) K r(X,Y ) is an AL-space under the k-norm if and only if X is an AM -space

and Y is an AL-space.

(2) K r(X,Y ) is an AM -space under the k-norm if and only if X is an AL-space

and Y is an AM -space.

▹ See Wickstead [74, Theorem 2.5]. ◃

5. Injective Banach Lattices

Definition 5.1. A real Banach lattice X is said to be injective if, for every

Banach lattice Y , every closed vector sublattice Y0 ⊂ Y , and every positive linear

operator T0 : Y0 → X there exists a positive linear extension T : Y → X with

∥T0∥ = ∥T∥. This de�nition is illustrated by the commutative (T0 = T ◦ ι) diagram:

Y0 Yι
//

X

Y0

??

T0

��
��
��
��
��
�
X

Y

__

T

?
?

?
?

?
?

Other equivalent conditions are presented in the next result, see Lotz [53].

Theorem 5.2. For a Banach lattice X the following are equivalent:

(1) X is injective.

(2) If X is lattice isometrically embedded into a Banach lattice Y and T0 is

a positive linear operator from X to a Banach lattice Z then there exists a positive

linear extension T : Y → Z with ∥T0∥ = ∥T∥.
(3) If X is lattice isometrically embedded into a Banach lattice Y then there

exists a positive contractive projection from Y onto X.

Thus, the injective Banach lattices are the injective objects in the category of

Banach lattices with the positive contractions as morphisms. Arendt [9, Theo-

rem 2.2] proved that the injective objects are the same if the regular operators

with contractive modulus are taken as morphisms.

Lotz [53] was the �rst who introduced this concept and proved among other

things the following two results. But the �rst example of injective Banach lattice

was indicated by Abramovich [1].

Theorem 5.3 (Abramovich, [1]; Lotz, [53]). A Dedekind complete AM -space

with unit is an injective Banach lattice.

Taking into account the Kakutani�Kre��n Representation Theorem one can state

Theorem 5.3 equivalently: The Banach lattice of continuous functions C(K) is

injective, whenever K is an extremally disconnected Hausdor� compact topological

space.

Theorem 5.4 (Lotz, [53]). Every AL-space is an injective Banach lattice.
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Theorem 5.4 shows that there is an essential di�erence between injective Banach

lattices and injective Banach spaces, since C(K) with extremally disconnected

compactum K is the only (up to isomorphism) injective object in the category of

Banach spaces and linear contractions (see Goodner [26], Kelley [36], Nachbin [56]).

Definition 5.5. A separable Banach lattice X is said to be separably-injective

if for every pair of separable Banach lattices Y ⊂ Z and every positive linear map

from Y to X, there exists a norm preserving positive linear extension from Z to Y .

In [13, Theorem 3] Buskes observed that every separably-injective Banach lattice

is injective. Unlike the situation with separable Banach lattices, in the category

of separable Banach spaces and bounded linear operators there is a unique (up

to isomorphism) in�nite dimensional injective object c0, see Sobczyk [65] and

Zippin [76]. More details concerning injective Banach lattices see in Cartwright [14],

Gierz [25], Haydon [33], Lotz [53], Mangheni [54], Schaefer [63], Wickstead [73].

A geometric property which enables us to characterize injective Banach lattices

was discovered by Cartwright [14].

Definition 5.6. A Banach latticeX has the splitting property if, given x1, x2, y ∈
X+ with ∥x1∥ 6 1, ∥x2∥ 6 1, and ∥x1 + x2 + y∥ 6 2, there exist y1, y2 ∈ X+ such

that y1 + y2 = y, ∥x1 + y1∥ 6 1, and ∥x2 + y2∥ 6 1.

Definition 5.7. A Banach lattice X has the Cartwright property if, given

x1, x2, y ∈ X+ and 0 < r1, r2 ∈ R with ∥x1∥ 6 r1, ∥x2∥ 6 r2, and ∥x1 + x2 + y∥ 6
r1 + r2, there exist y1, y2 ∈ X+ such that y1 + y2 = y, ∥x1 + y1∥ 6 r1, and

∥x2 + y2∥ 6 r2.

Definition 5.8. A Banach lattice X has the �nite order intersection property

if, given z ∈ X+, �nite collections x1, . . . , xn ∈ X+, y1, . . . , ym ∈ X+, and strictly

positive reals r1, . . . , rn ∈ R+, s1, . . . , sm ∈ R+ such that ∥xi∥ 6 ri, ∥yj∥ 6 sj, and

∥xi + yj + z∥ 6 ri + sj for all i := 1, . . . , n and j := 1, . . . ,m, there exist u, v ∈ X+

with z = u+v, ∥xi+u∥ 6 ri, and ∥yj+v∥ 6 sj for all i := 1, . . . , n and j := 1, . . . ,m.

Theorem 5.9 (Cartwright, [14]). For a Banach lattice the splitting property, the

Cartwright property, and the �nite order intersection property are equivalent.

Theorem 5.10 (Cartwright, [14]). A Banach lattice has the splitting property

if and only if its second dual is injective.

Gierz in [25, Corollaries 3.3 and 3.4] proved that every Banach lattice with the

splitting property (and hence every injective Banach lattice) has the approximation

property.

Cartwright [14, Corollary 3.8] proved that a Banach lattice is injective if and only

if it has the Cartwright property and the property (P ). Haydon demonstrated that

the property (P ) may be replaced with the intrinsic `completeness' property.

Theorem 5.11 (Haydon, [33]). A Banach lattice is injective if and only if it has

the Cartwright, Fatou, and Levi properties.

A crucial role in the structure theory of injective Banach lattices is played by the

concept of an M -projection which, in addition to their structure as Banach lattices,

determines important peculiar properties. The notion of an M -projection goes back
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to [6]; in a wider context of a general Banach space theory the concept is presented

in [11] and [32].

Definition 5.12. A band projection π in a Banach lattice X is called an M -pro-

jection if ∥x∥ = max{∥πx∥, ∥π⊥x∥} for all x ∈ X, where π⊥ := IX−π. The setM(X)

of all M -projections in X forms a Boolean subalgebra of P(X). The f -subalgebra of

the center Z (X) generated by M(X) is called the M -center of X and denoted by

Zm(X). Clearly, Zm(X) = R · IX if and only if M(X) = {O,1}.
Observe that M(X) is an order closed subalgebra of P(X) whenever X has the

Fatou and Levi properties. In this event the relations B ≃ M(X) and Λ(B) ≃ Zm(X)

are equivalent. Note also that if X is an AL-space and Y is an AM -space then

M(X) = {0, IX} and M(Y ) = P(Y ).

Theorem 5.13 (Haydon, [33]). An injective Banach lattice X is an AL-space

if and only if there is no M -projection in it other than zero and identity, i. e.,

M(X) = {0, IX} (or, equivalently, if and only if its M -center is one-dimensional,

i. e., Zm(X) = R · IX).
Definition 5.14. A real Banach lattice X is said to be λ-injective, if for every

Banach lattice Y , closed sublattice Y0 ⊂ Y , and positive T0 : Y0 → X there exists

a positive extension T : Y → X with ∥T∥ 6 λ∥T0∥.
It was proved in [51] that every �nite-dimensional λ-injective Banach lattice is

lattice isomorphic to
(∑⊕

j6k l1(nj)
)
l∞
, while it was shown in [54] that every order

continuous λ-injective Banach lattice is lattice isomorphic to L1(µ) space. But the

general question is still open:

Problem 5.15: Is every λ-injective Banach lattice order isomorphic to 1-injective

Banach lattice?

One of the intriguing problems, dating from the work [28], is the classi�cation

of the Banach space whose duals are isometric to an AL-space, see also [52]. We

believe that the injective version of this problem deserves an independent study.

Problem 5.16: Classify and characterize the Banach spaces whose duals are

injective Banach lattices.

6. Boolean Valued Analysis

The term Boolean valued analysis, coined by G. Takeuti (see [66]), signi�es the

technique of studying properties of an arbitrary mathematical object by means of

comparison between its representations in two di�erent set-theoretic models whose

construction utilizes principally distinct Boolean algebras. As these models, the

classical Cantorian paradise in the shape of the von Neumann universe V and

a specially-trimmed Boolean valued universe V(B) are usually taken. Recall the

following three basic principles of Boolean valued set theory.

Given a complete Boolean algebra B, we can de�ne the universe V(B) of B-valued
sets [12, 45, 46]. To speak about V(B) take an arbitrary formula φ = φ(u1, . . . , un) of

the language of set theory and replace the variables u1, . . . , un by x1, . . . , xn ∈ V(B).

Then we obtain some statement about x1, . . . , xn. There is a natural way of assigning
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to each such statement some element [[φ(x1, . . . , xn)]] ∈ B which acts as the Boolean

truth-value of φ(u1, . . . , un) in the universe V(B) and is de�ned by induction on

the complexity of φ by naturally interpreting the propositional connectives and

quanti�ers in the Boolean algebra B
(
for instance, [[φ1 ∨ φ2]] := [[φ1]] ∨ [[φ2]] and

[[∀xφ(x)]] =
∧
{[[φ(u)]] : u ∈ V(B)}

)
and assigning the truth-values [[x ∈ y]] ∈ B and

[[x = y]] ∈ B, where x, y ∈ V(B). We say that φ(x1, . . . , xn) is valid within V(B) if

[[φ(x1, . . . , xn)]] = 1. In this event, we also write V(B) |= φ(x1, . . . , xn).

There is a smooth mathematical toolkit, the ascending-and-descending technique

for revealing interplay between the interpretations of one and the same fact in the

two universes V and V(B).

Definition 6.1. Given an arbitrary element X of the Boolean valued uni-

verse V(B), we de�ne the descent X↓ ∈ V of X as X↓ := {y ∈ V(B) : [[y ∈ x]] = 1}.
Definition 6.2. Let X ∈ V and X ⊂ V(B); i. e., let X be some set composed of

B-valued sets. There exists a unique X↑ ∈ V(B) such that [[y ∈ X↑]] =
∨
{[[x = y]] :

x ∈ X} for all y ∈ V(B). The element X↑ is called the ascent of X.

If X, Y, f, P ∈ V(B) are such that [[X ̸= ∅]] = [[X ̸= ∅]] = 1, [[f : X → Y ]] = 1,

and [[P ⊂ X × Y ]] = 1 then X↓ and Y ↓ are nonempty sets, f↓ is a mapping from

X↓ to Y ↓, and P↓ is a relation on X↓. Similar assertion is true for ascents.

Definition 6.3. Given X ∈ V, we de�ne the standard name X∧ ∈ V(B) of X by

recursion on the well-founded relation x ∈ X: X∧ is the ascent of {x∧ : x ∈ X}.
The standard name mapping X 7→ X∧ is an embedding of V into V(B). Moreover,

the standard name sends V onto V(2), i. e., V ≃ V(2) ⊂ V(B), where 2 := {O,1} ⊂ B.
A general scheme of applying the Boolean valued approach is as follows,

see [46, 47]. Assume that X ⊂ V and X ⊂ V(B) are two classes of mathematical

objects, external and internal, respectively. Suppose we are able to prove the

following

Boolean Valued Representation Result: Every external X ∈ X embeds into an

Boolean valued model, becoming an internal object X ∈ X within V(B).

Boolean Valued Transfer Principle then tells us that every theorem about X
within ZFC has its counterpart for the original object X interpreted as a Boolean

valued object X .

Boolean Valued Machinery enables us to perform some translation of theorems

from X ∈ V(B) to X ∈ V making use of appropriate general operations (ascending-

descending) and the following principles of Boolean valued analysis.

Theorem 6.4 (Transfer Principle). For every theorem φ of ZFC, we have [[φ]] = 1

(also in ZFC); i. e., φ is true within the Boolean valued universe V(B).

Theorem 6.5 (Maximum Principle). Let φ(x) be a formula of ZFC. Then

(in ZFC) there is a B-valued set x0 satisfying [[(∃x)φ(x)]] = [[φ(x0)]].

Definition 6.6. A ZFC formula is called restricted provided that each of its

quanti�ers occurs in the form (∀x ∈ y) or (∃ x ∈ y)
(
i. e. (∀x)(x ∈ y → · · · ) or

(∃ x)(x ∈ y∧· · · )
)
or if it can be proved equivalent in ZFC to a formula of this kind.
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Theorem 6.7 (Restricted Transfer Principle). Let φ(x1, . . . , xn) be a bounded

formula of ZFC. Then (in ZFC) for all x1, . . . , xn ∈ V we have

φ(x1, . . . , xn) ⇐⇒ V(B) |= φ(x∧
1 , . . . , x

∧
n).

Recall the well-known assertion of ZFC: There exists a �eld of reals that is unique

up to isomorphism. Denote by R the �eld of reals (in the sense of V). Successively
applying the transfer and maximum principles, we �nd an element R ∈ V(B) for

which [[R is a �eld of reals ]] = 1. Moreover, if an arbitrary R ′ ∈ V(B) satis�es

the condition [[R ′ is a �eld of reals ]] = 1 then [[ the ordered �elds R and R ′ are

isomorphic ]] = 1. In other words, there exists an internal �eld of reals R ∈ V(B)

which is unique up to isomorphism.

Definition 6.8. We call R the internal reals in V(B).

Consider another well-known assertion of ZFC: If P is an Archimedean ordered

�eld then there is an isomorphic embedding h of the �eld P into R such that

the image h(P) is a sub�eld of R containing the sub�eld of rational numbers.

In particular, h(P) is dense in R.
Note also that φ(·), presenting the conjunction of the axioms of an Archimedean

ordered �eld, is bounded; therefore, [[φ(R∧) ]] = 1 by the Restricted Transfer

Principle, i. e., [[R∧ is an Archimedean ordered �eld ]] = 1. �Pulling� the above

assertion through the transfer principle, we conclude that [[R∧ is isomorphic to

a dense sub�eld of R ]] = 1. We further assume that R∧ is a dense sub�eld of R. It

is easy to see that the elements 0∧ and 1∧ are the zero and unity of R.

Definition 6.9. The descent R := R↓ := (R↓,⊕↓,⊙↓,5 ↓, 0, 1) of the algebraic
structure R := (R,⊕,⊙,5, 0, 1) is de�ned as the descent R↓ of the underlying

set R equipped with the descended operations ⊕↓ and ⊙↓ and order 5 ↓ of the

structure R. For simplicity, we will denote the operations and order in R and R↓
by the same symbols +, · , and 6.

The fundamental result of Boolean valued analysis is the Gordon Theorem which

describes an interplay between R, R, and R and reads as follows: Each universally

complete vector lattice is an interpretation of the reals in an appropriate Boolean

valued model. In more detail:

Theorem 6.10 (Gordon, [27]). Let R be a �eld of reals in V(B) and R = R↓.
Then the following assertions hold:

(1) The internal �eld R ∈ V(B) can be chosen so that

[[R∧ is a dense sub�eld of the �eld R ]] = 1.

(2) The algebraic structure R (with the descended operations and order) is an

universally complete vector lattice.

(3) There is a Boolean isomorphism χ from B onto P(R) such that

χ(b)x = χ(b)y ⇐⇒ b 6 [[x = y ]],

χ(b)x 6 χ(b)y ⇐⇒ b 6 [[x 6 y ]]

(x, y ∈ R; b ∈ B).
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Definition 6.11. The restricted descent Λ ⊂ R = R↓ of R↓ is the order ideal

in R generated by 1∧ equipped with the order-unit norm ∥ · ∥∞:

Λ:= {x ∈ R : (∃C ∈ R+) − C1∧ 6 x 6 C1∧};
∥x∥∞ := inf{0 < C ∈ R : −C1∧ 6 x 6 C1∧} (x ∈ Λ).

Write Λ = Λ(B), since Λ is uniquely de�ned by B. Clearly, Λ is a Dedekind complete

AM -space with unit 1∧. By Kakutani�Kre��n Representation Theorem Λ ≃ C(K)

with K being an extremally disconnected compact Hausdor� space.

Theorem 6.12 (Gordon's Theorem for complexes). Each complex universally

complete vector lattice is an interpretation of the complexes in an appropriate

Boolean valued model. In more detail, if C is the �eld of complex numbers within

V(B) then C ↓ = R↓ ⊕ iR↓.

7. Boolean Valued Banach Lattices

In this section we present some Boolean valued representation results for Banach

lattices needed in the sequel. Assume that X is a Banach lattice and B is a complete

subalgebra of a complete Boolean algebra B(X) consisting of projection bands and

denote by B′ the corresponding Boolean algebra of band projections. If a Boolean

algebra B is isomorphic to B′ then we will identify the Boolean algebras B′ and B,
writing B ⊂ P(X). We also will identify P(Λ) and B.

Definition 7.1. If (bξ)ξ∈Ξ is a partition of unity in B and (xξ)ξ∈Ξ is a family

in X, then there is at most one element x ∈ X with bξxξ = bξx for all ξ ∈ Ξ. This

element x, if existing, is called the mixing of (xξ) by (bξ). Clearly, x = o-
∑

ξ∈Ξ bξxξ.

A Banach lattice X is said to be B-cyclic or B-complete if the mixing of every family

in the unit ball U(X) of X by each partition of unity in B (with the same index set)

exists in U(X).

A Banach lattice (X, ∥·∥) is B-cyclic with respect to a complete Boolean algebra B
of band projections on X if and only if there exists a Λ(B)-valued norm · on X

such that (X, · ) is a Banach-Kantorovich space, |x| 6 |y| implies x 6 y

for all x, y ∈ X, and ∥x∥ = ∥ x ∥∞ (x ∈ X), see Kusraev and Kutateladze [47,

Theorems 5.8.11 and 5.9.1].

Definition 7.2. LetX and Y be Banach spaces with B ⊂ L (X) and B ⊂ L (Y ).

An operator T : X → Y is called B-linear, if it is linear and commutes with all

projections from B, i. e., if b◦T = T◦b. (Here, of course, we mean φY (b)◦T = T◦φX(b)

with φX : B → B(X) and φY : B → B(Y ) being Boolean isomorphism.) A bijective

B-linear operator is called a B-isomorphism and an isometric B-isomorphism is

called a B-isometry. À B-isometric lattice homomorphism is referred to as lattice

B-isometry.

Let LB(X,Y ) stands for the set of all bounded B-linear operators from X into Y .

Clearly LB(X,Y ) is a B-cyclic Banach space whenever Y is.

Definition 7.3. Denote by X# := LB(X,Λ), where Λ = Λ(B), the B-dual to X.
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Now we are able to answer the question: What kind of category is produced by

applying the descending procedure to the category of Banach lattices within V(B)?

The answer is given in the following two results.

Let (X , ∥ · ∥) be a Banach lattice within V(B). De�ne the mapping N from X ↓
to R+ := R↓+ as the descent N(·) := (∥ · ∥)↓ of the norm ∥ · ∥. Then X ↓ (with the

descended operations and order) is a vector lattice (and even an R-module) and N

is an R-valued norm on X ↓ (i. e., N(x) = 0 ⇐⇒ x = 0, N(x+ y) 6 N(x)+N(y),

N(λx) = λN(x) for all x, y ∈ X ↓ and λ ∈ R+).

Definition 7.4. The bounded descent X ⇓ of X is de�ned as the set

X ⇓ := {x ∈ X ↓ : N(x) ∈ Λ}

equipped with the descended operations, order relation and mixed norm:

|||x||| := ∥N(x)∥∞ (x ∈ X ⇓).

Theorem 7.5. A restricted descent of a Banach lattice from the model V(B) is

a B-cyclic Banach lattice. Conversely, if X is a B-cyclic Banach lattice, then in the

model V(B) there exists up to the lattice isometry a unique Banach lattice X whose

restricted descent X ⇓ is isometrically B-isomorphic to X. Moreover, B = M(X) if

and only if [[there is no M -projection in X other than 0 and IX ]] = 1.

▹ See Kusraev and Kutateladze [47, Theorem 5.9.1]. ◃
Definition 7.6. The elements X ∈ V(B) in Theorem 7.5 and T ∈ V(B) in

Theorem 7.7 below are said to be the Boolean valued representations of X and T ,

respectively.

Denote by L r
B (X,Y ) the space of all regular B-linear operators from X to Y

equipped with the regular norm ∥T∥r := inf{∥S∥ : S ∈ LB(X,Y ), ±T 6 S}.
Let X and Y be the Boolean valued representations of B-cyclic Banach lattices X

and Y , respectively, while L r(X ,Y ) stands for the space of all regular operators

from X to Y with the regular norm within V(B). The following result states that

L r(X ,Y ) is the Boolean valued representation of L r
B (X, Y ).

Theorem 7.7. Assume that X and Y are B-cyclic Banach lattices, while X
and Y are their respective Boolean valued representations. The space L r

B (X, Y ) is

order B-isometric to the bounded descent L r(X ,Y )⇓ of L r(X ,Y ). The B-iso-
metry is set up by assigning to any T ∈ L r

B (X, Y ) the element T := T↑ of V(B) is

uniquely determined from the formulas [[T : X → Y ]] = 1 and [[T x = Tx ]] = 1

(x ∈ X).

▹ Observe that LB(X,Y ) and L (X ,Y )⇓ are B-isometric by [38, Theo-

rem 8.3.6]. Since T (X+)↑ = T↑(X+↑) = T (X+), it follows that T (X+) ⊂ Y+ if

and only if [[T (X+) ⊂ Y+]] = 1. This means that the bijection T ↔ T = T↑
preserves positivity and hence is an order B-isomorphism between L r

B (X, Y ) and

L r(X ,Y )⇓. Since for S ∈ L r
B (X, Y ) and S := S↑ the relations ±T 6 S

and [[±T 6 S ]] = 1 are equivalent, we have [[∥T ∥r = T r]] = 1, where

T r = inf{ S : S ∈ L r
B (X, Y ), ±T 6 S} and S := sup{ Sx : x 6 1}. Thus, it

remains to prove that ∥T∥r = ∥ T r∥∞ (T ∈ L r
B (X, Y )).
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If±T 6 S then ∥ T ∥∞ 6 ∥ S ∥∞ = ∥S∥ and hence ∥T∥r > ∥ T r∥∞. To prove the
reverse inequality take an arbitrary 0 < ε ∈ R and choose a partition of unity (πξ)ξ∈Ξ
in B and a family (Sξ)ξ∈Ξ in L r

B (X, Y ) such that Sξ > ±T and πξ Sξ 6 (1+ε) T r for

all ξ ∈ Ξ. De�ne an operator S ∈ L r
B (X, Y ) by Sx := mixξ∈Ξ πξSξx (x ∈ X), where

the mixing exists in Y , since Sξx 6 (1+ε) T r x and hence (Sξx) is norm bounded

in Y . Moreover, Sx =
∑

ξ πξSξx in the sense of Λ-valued norm on Y . Therefore,

S > ±T and S 6 (1 + ε) T r, whence ∥T∥r 6 ∥S∥ = ∥ S ∥∞ 6 (1 + ε)∥ T r∥∞. ◃

Theorem 7.8. Let X be a B-cyclic Banach lattice and let X be its Boolean

valued representation in V(B). Then the following hold:

(1) V(B) � �X is Dedekind complete� if and only if X is Dedekind complete.

(2) V(B) � �X is Fatou (Levi)� if and only if X is Fatou (Levi).

(3) V(B) � �X is order continuous� if and only if X is order B-continuous.
(4) V(B) � �X is a KB-space� if and only if X is order B-continuous and Levi.

(5) V(B) � �X is an AM -space� if and only if X is an AM -space.

▹ See Kusraev and Kutateladze [47, Theorems 5.9.6 and 5.12.1 (2)]. ◃
Now, we describe a Boolean valued analysis approach to the theory of injective

Banach lattices developed in [39, 41, 42]. First we clarify what the Boolean valued

representation of an injective Banach lattice is, see [42, Theorem 4.1].

Theorem 7.9. Suppose that X is a B-cyclic Banach lattice and X ∈ V(B) is its

Boolean valued representation. Then the following assertions hold:

(1) X is injective if and only if [[X is injective ]] = 1.

(2) X is injective and B ≃ M(X) if and only if [[X is injective and M(X ) =

{0, IX } ]] = 1.
▹ See Kusraev and Kutateladze [47, Theorem 5.12.1 (1, 3)]. ◃
Theorem 7.10 (Haydon, [33]). Let X is an injective Banach space. Then X is

an AL-space if and only if M(X) = {0, IX}.
Now, putting together Theorems 7.5, 7.9, and 7.10 we arrive at our main repre-

sentation theorem for injectives, see [39, Theorem 1] and [42, Theorem 4.4].

Theorem 7.11. A bounded descent X ⇓ of an AL-space X from V(B) is an

injective Banach lattice with B ≃ M(X ⇓). Conversely, if X is an injective Banach

lattice and B ≃ M(X), then there exist an AL-space X in V(B) whose bounded

descent is lattice B-isometric to X; in symbols, X ≃B X ⇓.
Theorem 7.11 implies the transfer principles from AL-spaces to injective Banach

spaces which can be stated as follows:

(1) Every injective Banach lattice embeds into an appropriate Boolean valued

model, becoming an AL-space (Theorem 7.11).

(2) Each theorem about the AL-space within Zermelo�Fraenkel set theory with

choice has its counterpart for the original injective Banach lattice interpreted as

a Boolean valued AL-space (Boolean valued Transfer Principe, Theorem 6.4).



20 A. G. Kusraev and A. W. Wickstead

(3) Translation of theorems from AL-spaces to injective Banach lattices is carried

out by general operations and principles of Boolean valued analysis (outlined at the

beginning of Sections 6).

The following important representation result (see [42, Corollary 4.5] and [39,

Theorem 2]) which do not involve the concept of Boolean valued model can deduce

immediately from Theorem 7.11. Before stating this result, recall some de�nitions.

Definition 7.12. A positive operator T : X → Y between vector lattices is said

to: (1) be a Maharam operator whenever it is an order continuous and order interval

preserving, i. e., T ([0, x]) ⊂ [0, Tx] for all x ∈ X+; (2) have the Levi property if

sup xα exists in Y for every increasing net (xα) ⊂ X+, provided that the net (Txα)

is order bounded in Y ; (3) be strictly positive if Tx = 0 implies x = 0 for all x ∈ X+.

If Y = Λ and T is strictly positive then L1(T ) denotes the domain of T endowed

with the norm |||x||| = ∥T (|x|)∥∞ (x ∈ L1(T )), see De�nition 7.4.

Theorem 7.13. If T is a strictly positive Maharam operator with the Levi

property taking values in a Dedekind complete AM -space Λ with unit, then

(L1(Φ), |||·|||) is an injective Banach lattice with M(L1(Φ)) ≃ P(Λ).
Conversely, any injective Banach lattice X is lattice B-isometric to (L1(T ), |||·|||)

for some strictly positive Maharam operator T with the Levi property taking values

in a Dedekind complete AM -space Λ with unit, where B = M(L1(T )) ≃ P(Λ).
Haydon proved three representation theorems for injective Banach lattices, see

[33, Theorems 5C, 6H, and 7B]. These results may be also deduced from the above

representation theorem (see Theorems 7.11 and 7.13 and [42, Remark 4.13]). An

alternative approach relies upon Gutman's theory of bundle representation of lattice

normed spaces developed in [29, 30].

As is seen from Theorem 7.13, an arbitrary injective Banach latticeX has a mixed

L-M -structure. Thus, the dual X ′ and the B-dual X# should have, in a sense, an

M -L-structure. Hence a natural question arises:

Problem 7.14: What kind of duality theory is there for injectives?

Definition 7.15. An orthogonally additive convex modular [34, � 3.3] on a vector

lattice X is an operator Θ : X → Λ satisfying (for all x, y ∈ X and a ∈ [0,1]):

(1) Θ(x) = 0 ⇐⇒ x = 0; (2) |x| 6 |y| =⇒ Θ(x) 6 Θ(y); (3) Θ(ax + (1 − a)y) 6
aΘ(x) + (ax+ (1− a)Θ(y); (4) |x| ∧ |y| = 0 =⇒ Θ(x+ y) = Θ(x) + Θ(y).

Definition 7.16. Say that an orthogonally additive convex modular Θ : X → Λ

factors through injective Banach lattice L, if Θ = Φ ◦ θ for a strictly positive

Maharam operator Φ : L → Λ with the Levi property and an orthogonally additive

(nonlinear) embedding θ : X → L.

Problem 7.17: Find conditions under which an orthogonally additive convex

modular admits factorization through injective Banach lattice.

Definition 7.18. An Orlicz B-lattice is a B-cyclic Banach lattice X (cf. [34,

� 3.3] if there is an orthogonally additive convex modular Θ : X → Λ = Λ(B) with
∥x∥ = inf{α > 0 : Θ(x/α) 6 1} (x ∈ X).

Problem 7.19: Prove a representation theorem for Orlicz B-lattices making use
of the above representation of injective Banach lattices (Theorem 7.13).
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8. Operators on Injective Banach Latices

By Boolean valued transfer principle all the theorems in Sections 2�4 are true

within each Boolean valued model of set theory. Now we are going to produce new

results by externalization of these internal facts. Below X , Y and T stand for

Boolean valued representations of X, Y and T , respectively.

We consider �rst the question under which conditions the space of regular B-li-
near operators between B-cyclic Banach lattices is itself an injective Banach lattice

or an AM -space.

Theorem 8.1. Let X and Y be B-cyclic Banach lattices with Y Dedekind

complete. Then L r
B (X,Y ) is an injective Banach lattice under the regular norm

with B ≃ M(L r
B (X, Y )) if and only if X is an AM -space and Y is an injective

Banach lattice with B = M(Y ).

▹ This is a Boolean valued interpretation of Theorem 4.12. In view of

Theorems 7.7 and 7.11 L r
B (X, Y ) is an injective Banach lattice under the regular

norm with B(L r
B (X,Y )) isomorphic to B if and only if L r(X ,Y ) is an AL-space

under the regular norm within V(B). Theorem 4.12 (applicable by Theorem 7.8 (1))

tells us that the latter is equivalent to saying that X is an AM -space and Y is an

AL-space. It remains to refer again to Theorems 7.8 (5) and 7.11. ◃
Theorem 8.2. Let Y be a nonzero B-cyclic Dedekind complete Banach lattices.

Then L r
B (X, Y ) is an AM -space under the regular norm with M(L r

B (X, Y )) ≃ B for

every injective Banach lattice X with B = M(X) if and only if Y is an AM -space

with a Fatou norm.

▹ The proof is similar to that of Theorem 8.1: Theorem 4.13 is true within V(B)

and hence L r(X ,Y ) is an AM -space under the regular norm for every AL-space X
if and only if Y is an AM -space with a Fatou norm. Moreover, Y has the Fatou

norm if and only if [[Y has the Fatou norm ]] = 1, see [47, Theorem 5.9.6 (2)]. Now,

combining Theorems 7.7 and 7.8 completes the proof. ◃
Definition 8.3. A positive element x of a B-cyclic Banach lattice X is said to

be B-indecomposable or a B-atom if for any pair of disjoint elements x, y ∈ X+ with

y + z 6 x there exists a projection π ∈ B such that πy = 0 and π⊥z = 0, while X

is called B-atomic if the only element of X disjoint from every B-atom is the zero

element.

Theorem 8.4. If X is a B-cyclic Banach lattices then L r
B (X,Y ) is an AM -space

under the regular norm for every Dedekind complete B-cyclyc AM -space Y if and

only if X is a B-atomic injective Banach lattice with B ≃ M(X).

▹ The proof is similar to that used above involving Theorem 4.14. ◃
It is easy to observe that a B-cyclic Banach lattice X is atomic with respect to its

natural module structure over the ring Zm(X), see De�nition 5.12. Representation

and classi�cation of B-atomic injective Banach lattices can be found in Kusraev [43].
Combining the notions of mixing (De�nition 7.1) and compactness yields the

following concept of mix-compactness (or cyclical compactness) and the correspon-

ding class of linear operators.
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Definition 8.5. Denote by Prt(B) (respectively, Prtσ(B)) the set of all partitions
(respectively, countable partitions) of unity in B. A set U in X is said to be

mix-complete if, for all (πξ)ξ∈Ξ ∈ Prt(B) and (uξ)ξ∈Ξ ⊂ U , there is u ∈ U such

that u = mixξ∈Ξ πξuξ. Suppose that X is a B-cyclic Banach lattice, (xn)n∈N ⊂ X,

and x ∈ X. Say that a sequence (xn)n∈N B-approximates x if, for each k ∈ N, we have
inf{supn>k ∥πn(xn − x)∥ : (πn)n>k ∈ Prtσ(B)} = 0. Call a set K ⊂ X mix-compact

if K is mix-complete and for every sequence (xn)n∈N ⊂ K there is x ∈ K such that

(xn)n∈N B-approximates x.
It can easily be checked that whenever ∥ · ∥ is de�nes as ∥x∥ = ∥ x ∥∞ (x ∈ X)

with a Λ(B)-valued norm · , then a sequence (xn)n∈N in X B-approximates x if and

only if infn>k xn − x = 0 for all k ∈ N.
Definition 8.6. An operator from a Banach space into a B-cyclic Banach lattice

(space) is called cyclically compact or mix-compact if the image of any bounded

subset is contained in a cyclically compact set.

It is clear that in case E = R mix-compactness is equivalent to compactness

in the norm topology. Note also that the concept of mix-compactness in Gutman

and Lisovskaya [31] coincides with that of cyclically compactness introduced by

Kusraev [38], see [31, Theorem 3.4] and [47, Proposition 2.12.C.5].

Given B-cyclic Banach lattices X and Y , denote by KB(X,Y ) the space of B-li-
near mix-compact operators from X to Y and let K r

B (X, Y ) stands for the linear

span of positive B-linear mix-compact operators in KB(X, Y ), see [38, 8.5.5]. The

latter is a Banach lattice under the k-norm de�ned as

∥T∥k := inf{∥S∥ : ±T 6 S ∈ K r
B (X, Y )}.

Clearly, K (X, Y ) = KB(X, Y ) and K r(X, Y ) = K r
B (X,Y ), if B = {0,1}, cp. [74].

Theorem 8.7. Let X and Y be B-cyclic Banach lattices. Then K r
B (X,Y ) is an

injective Banach lattice under the k-norm with M(L r
B (X, Y )) ≃ B if and only if X

is an AM -space and Y is an injective Banach lattice with M(Y ) ≃ B.
▹ The proof runs along the same lines interpreting Theorem 4.15 within Boolean

valued model. We have only to observe that an operator T ∈ L r
B (X,Y ) is mix-

compact if and only if [[T = T↑ is a compact linear operator from X into

Y ]] = 1, see [38, Proposition 8.5.5 (1)]. Thus the B-isometry between L r
B (X, Y )

and L r(X ,Y )⇓ induces a B-isometry between K r
B (X, Y ) and K r(X ,Y )⇓. ◃

Theorem 8.8. The following conditions on a B-cyclic Banach lattice X are

equivalent:

(1) X is isomorphic to an injective Banach lattice.

(2) For every B-cyclic Banach lattices Y , every mix-compact B-linear operator
from X into Y is regular.

(3) For every B-cyclic Banach lattice Y , KB(X,Y ) is a vector lattice.

▹ This is a Boolean valued interpretation of Theorem 3.2. ◃
Theorem 8.9. The following conditions on a pair of B-cyclic Banach lattices

(X, Y ) are equivalent:
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(1) There exist M -projections π1 and π2 such that π1X is an injective Banach

lattice with M(π1X) ≃ π1B := [0, π1], π2Y is an AM -space, and π1 ∨ π2 = 1.

(2) KB(X, Y ) is a Banach lattice under the operator norm.

Furthermore, in this case the lattice operations are given by the Freudenthal�

Kantorovich�Riesz formula.

▹ This is a Boolean valued interpretation of Theorem 4.1. ◃
Definition 8.10. Say that a downward directed set A ⊂ X is B-convergent to

zero if for every 0 < ε ∈ R there exists a partition of unity (πa)a∈A in B such that

∥πaa∥ 6 ε for all a ∈ A. The norm in X is said to be order B-continuous if every

downward directed set A ⊂ X with inf A = 0 is B-convergent to zero.
Problem 8.11: Characterize B-cyclic Banach lattices X with B-atomic order

B-continuous B-dual X#. In view of Theorem 7.5 it is su�cient to settle the case

B = {O,1}: Characterize Banach lattices X with atomic order continuous dual X ′.

In connection with Problem 8.11 it should be noted that there exist non-atomic

Banach lattices with atomic duals, see Lacey and Wojtaszczyk [48].

Problem 8.12: Consider mix-compact versions of Problems 3.4 and 3.7.

Interpreting Theorem 4.4 in an appropriate Boolean valued model and making

use of the observation made in the proof of Theorem 8.7 yields the following result.

Theorem 8.13. If X and Y are B-cyclic Banach lattices then the following two

assertions are equivalent:

(1) One of the following three (non-exclusive) conditions holds:

(a) Both X# and Y have an order B-continuous norm.

(b) Y is an B-atomic Banach lattice with an order B-continuous norm.

(c) X# is an B-atomic Banach lattice with an order B-continuous norm.

(2) If S, T ∈ LB(X, Y ), 0 6 S 6 T and T is mix-compact then S is mix-compact.

In conclusion we consider the Boolean valued interpretation of a portion of the

theory of cone absolutely summing operators.

Definition 8.14. Let X be a Banach lattice and Y be a B-cyclic Banach space.
Denote by Pfin(X) the collection of all �nite subsets of X. For T ∈ L (X, Y ) de�ne

σ(T ) := σB(T ) := sup

{
inf

(πk)∈Prtσ(B)
sup
k∈N

n∑
i=1

∥πkTxi∥ :

{x1, . . . , xn}∈Pfin(X),

∥∥∥∥ n∑
i=1

|xi|
∥∥∥∥61

}
.

An operator T ∈ L (X, Y ) is said to be cone B-summing if σ(T ) < ∞. Thus, T is

cone B-summing if and only if there exists a positive constant C such that for any

�nite collection x1, . . . , xn ∈ X there is a countable partition of unity (πk)k∈N in B
with

sup
k∈N

n∑
i=1

∥πkTxi∥ 6 C

∥∥∥∥ n∑
i=1

|xi|
∥∥∥∥;

moreover, in this event σ(T ) = inf{C}.
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Denote by SB(X, Y ) the set of all cone B-summing operators. The class SB(X, Y )

was introduced in Kusraev [39], see also Kusraev and Kutateladze [47, 5.13.1].

Observe that if B = {0, IY } then S (X,Y ) := SB(X, Y ) is the space of cone

absolutely summing operators, see Schaefer [62, Ch. 4, � 3, Proposition 3.3 (d)] or

(which is the same) 1-concave operators, see Diestel, Jarchow, and Tonge [22, p. 330].

Cone absolutely summing operators were introduced by Levin [49] and later

independently by Schlotterbeck, see [62, Ch. 4].

Theorem 8.15. Let X and Y be nonzero Banach lattices. The following are

equivalent:

(1) S (X,Y ) is an AL-space.

(2) X is an AM -space and Y is an AL-space.

▹ This result is due to Schlotterbeck, see Schaefer [62, Ch. 4, Proposition 4.5]. ◃
Theorem 8.16. Let X be a nonzero Banach lattice and Y be a B-cyclic Banach

lattice. The following are equivalent:

(1) SB(X, Y ) is an injective Banach lattice with M(SB(X, Y )) isomorphic to B.

(2) X is an AM -space and Y is an injective Banach lattice withM(Y ) isomorphic

to B.

▹ There is an order preserving B-isometry from SB(X,Y ) onto the restricted

descent S (X ,Y )⇓, see [47, Theorem 5.13.6]. Now, the proof can be carried

out in similar lines by Boolean valued interpretation of Theorem 8.15, see [44,

Theorem 4.10]. ◃
A linear operator is cone B-summing precisely when it factors through injective

Banach lattice, see [47, Theorem 5.13.8]. At the same time for p ∈ Z (L) one

can de�ne the p-convexi�cation L(p) of a Banach lattice L by means of generalized

functional calculus, see [34, 68]). This observation motivates the following problems.

Problem 8.17: Characterize operators factorable through the p-convexi�ca-

tion L(p) of an injective Banach lattice L with I 6 p ∈ Z (L) or I 6 p ∈ Zm(L),
I := IL.

Problem 8.18: Introduce and explore some B-versions of p-summing concept

and its variations (such as lattice p-summing, positive p-summing etc.) in B-cyclic
Banach lattices, cf. [22].

Problem 8.19: Adopt real and complex interpolation methods to the variable

parameter scale of Banach lattices {L(p) : I 6 p ∈ Z (L)}, cf. [21, Sect. 3.7.8].

It is proved in [40] that Kaplansky�Hilbert lattices and injective Banach lattices

may be produced from each other by means of the convexi�cation and concavi�cation

procedures. Thus, one more natural question arises:

Problem 8.20: Characterize operators factorable through Kaplansky�Hilbert

lattices. Under what conditions every operator in L (X, Y ) (with X and Y being

Banach lattices) factors through Kaplansky�Hilbert lattice?
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