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HOMOGENEOUS FUNCTIONAL CALCULUS
ON VECTOR LATTICES

A. G. Kusraev

1. Introduction

For any finite sequence (x1, . . . , xN) (N ∈
�
) in a relatively uniformly complete

vector lattice the expression of the form ϕ(x1, . . . , xN) can be correctly defined
provided that ϕ is a positively homogeneous continuous function on � N . The study
of such expressions, called homogeneous functional calculus, provides a useful tool in
a variety of areas, see [9, 18, 19, 26, 27, 28, 36]. At the same time it is of importance in
certain problems to deal with ϕ(x1, . . . , xN ) even if ϕ is defined on a conic subset of

� N [5, 28, 29]. The aim of this paper is to extend homogeneous functional calculus
and consider an interplay between Minkowski duality and functional calculus on
vector lattices as well as to develop the quasilinearization method for proving
convexity inequalities in vector lattices.

In Section 2 the extended homogeneous functional calculus is defined. It is
shown that the expression ϕ(x1, . . . , xN) can naturally be defined in any relatively
uniformly complete vector lattice if a positively homogeneous function ϕ is defined
on some conic set dom(ϕ) ⊂ � N and is continuous on some subcone of dom(ϕ).
Section 3 contains some examples of computing ϕ̂(u1, . . . , uN) whenever u1, . . . , uN

are continuous or measurable vector-valued functions or ϕ is a Kobb–Duglas type
function. In Section 4 Minkowski duality is transplanted to vector lattice by
means of extended functional calculus. In Section 5, using this machinery, the
quasilinearization method for proving inequalities is developed in vector lattice
setting and the general forms of some classical inequalities (Jensen, Holder,
Minkowski) are also given. In Section 6 a Maligranda type inequality for positive
bilinear operators on uniformly complete vector latices is deduced. In Sections 7
and 8 formulas for computing ϕ(T1, . . . , TN) for linear and bilinear regular operators
T1, . . . , TN are derived and some operator inequalities are proved. Section 9 deals
with homogeneous functions on vector lattice of continuous and measurable sections.
Section 10 contains further examples.

There are different ways to define homogeneous functional calculus on vector
lattices [6, 18, 26, 30]. We follow the approach of G. Buskes, B. de Pagter, and
A. van Rooij [6] going back to G. Ya. Lozanovskĭı [30]. Theorem 1.1 below see in
[6, 19, 26, 36].

For the theory of vector lattices and positive operators we refer to the books [1]
and [19]. All vector lattices in this paper are real and Archimedean.

Denote by H ( � N ) the vector lattice of all continuous functions ϕ : � N → �
which are positively homogeneous (≡ ϕ(λt) = λϕ(t) for λ ≥ 0 and t ∈ � N ). Let dtk
stands for the kth coordinate function on � N , i.e. dtk : (t1, . . . , tN) 7→ tk.

1.1.Theorem. Let E be a relatively uniformly complete vector lattice. For any
x := (x1, . . . , xN) ∈ E

N there exists a unique lattice homomorphism

x̂ : ϕ 7→ x̂(ϕ) := ϕ̂(x1, . . . , xN)
(
ϕ ∈H ( � N )

)

of H ( � N ) into E with x̂(dtk) = xk (k := 1, . . . , N).
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If the vector lattice E is universally σ-complete (≡ Dedekind σ-complete and
laterally σ-complete) and has an order unit, then Borel functional calculus is also
available on E. Let B( � N ) denotes the vector lattice of all Borel measurable
functions ϕ : � N → � . The following result can be found in [19, Theorem 8.2.14].

1.2. Theorem. Let E be a universally σ-complete vector lattice with a fixed
weak order unit � . For any x := (x1, . . . , xN ) ∈ E

N there exists a unique sequentially
order continuous lattice homomorphism

x̂ : ϕ 7→ x̂(ϕ) := ϕ̂(x1, . . . , xN)
(
ϕ ∈ B( � N )

)

of B( � N ) into E such that x̂(1 � N ) = � and x̂(dtk) = xk (k := 1, . . . , N).

Let HBor( � N ) denote the vector sublattice of B( � N ) consisting of all positively
homogeneous Borel functions ϕ : � N → � .

1.3. Theorem. Let E be a universally σ-complete vector lattice and x̂ :=
(x1, . . . , xN ) ∈ E

N . Then there exists a unique sequentially order continuous lattice
homomorphism

x̂ : ϕ 7→ x̂(ϕ) = ϕ̂(x1, . . . , xN)
(
ϕ ∈HBor( � N )

)

of HBor( � N ) into E such that x̂(dtk) = xk (k := 1, . . . , N).

C Put � := |x1| + · · · + |xN | and denote by E0 the band in E generated by � .
Then E0 is a universally σ-complete vector lattice with order unit � and one can take
x̂ : HBor( � N ) → E0 as in Theorem 1.2. Since HBor( � N ) is an order σ-closed vector
sublattice of B( � N ), the restriction of x̂ onto HBor( � N ) is also an order σ-continuous
lattice homomorphism. If h : HBor( � N ) → E is another order σ-continuous lattice
homomorphism with h(dtk) = x̂(dtk) (k := 1, . . . , N), then h and x̂(·) coincide on
H ( � N ) by Theorem 1.1. Afterwards, we infer that h and x̂(·) coincide on the whole
HBor( � N ) due to order σ-continuity. B

2. Functional Calculus

In this section we define extended homogeneous functional calculus on relatively
uniformly complete vector lattices. Everywhere below x := (x1, . . . , xN) ∈ E

N .

2.1. Consider a finite collection x1, . . . , xN ∈ E and a vector sublattice L ⊂ E.
Denote by 〈x1, . . . , xN〉 and Hom(L) respectively the vector sublattice of E generated
by {x1, . . . , xN} and the set of all � -valued lattice homomorphisms on L. Put

[x] := [x1, . . . , xN ] := {(ω(x1), . . . , ω(xN)) ∈ � N : ω ∈ Hom(〈x1, . . . , xN〉)}.

Let e := |x1| + . . . + |xN | and Ω := {ω ∈ Hom(〈x1, . . . , xN〉) : ω(e) = 1}. Then e
is a strong order unit in 〈x1, . . . , xN〉 and Ω separates the points of 〈x1, . . . , xN〉.
Moreover, Ω may be endowed with a compact Hausdorff topology so that the
functions x̂k : Ω → � defined by x̂k(ω) := ω(xk) (k := 1, . . . , N) are continuous
and x 7→ x̂ is a lattice isomorphism of 〈x1, . . . , xN〉 into C(Ω). Put

Ω(x1, . . . , xN ) := {(ω(x1), . . . , ω(xN)) ∈ � N : ω ∈ Ω},

and observe that [x1, . . . , xN ] := cone(Ω(x1, . . . , xN)), where cone(A) is the conic
hull of A defined as

⋃
{λA : 0 ≤ λ ∈ � }. Evidently, Ω(x1, . . . , xN) is a compact

subset of � N , since it is the image of the compact set Ω under the continuous map
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ω 7→ (x̂1(ω), . . . , x̂N(ω)). Therefore, [x1, . . . , xN ] is a compactly generated conic set
in � N . (The conic set [x1, . . . , xN ] is closed if 0 /∈ Ω(x1, . . . , xN).) A set C ⊂ � N

is called conic if λC ⊂ C for all λ ≥ 0 while a convex conic set is referred
to as a cone. The reasoning similar to [6, Lemma 3.3] shows that [x1, . . . , xN ]
is uniquely determined by any point separating subset Ω0 of Hom(〈x1, . . . , xN〉).
Indeed, if Ω′0 := {ω(e)

−1ω : 0 6= ω ∈ Ω0}, then Ω′0 is a dense subset of Ω and
[x1, . . . , xN ] = cone

(
cl(Ω′0(x1, . . . , xN ))

)
, where Ω′0(x1, . . . , xN ) is the set of all

(ω(x1), . . . , ω(xN)) ∈ � with ω ∈ Ω′0.

2.2. For a conic set C in � N denote by Ĉ ⊂ EN the set of all x := (x1, . . . , xN) ∈
EN with [ x ] ⊂ C. Consider a conic set K ⊂ C. Let H (C;K) denotes the vector
lattice of all positively homogeneous functions ϕ : C → � with continuous restriction

to K. Fix (x1, . . . , xN ) ∈ Ĉ and take ϕ ∈ H (C; [ x ]). We say that ϕ̂(x1, . . . , xN)
exists or is well defined in E and write y = x̂(ϕ) = ϕ̂(x1, . . . , xN) if there is an element
y ∈ E such that ω(y) = ϕ(ω(x1), . . . , ω(xN)) for every ω ∈ Hom(〈x1, . . . , xN , y〉).

This definition is correct, since for any given (x1, . . . , xN ) ∈ Ĉ and ϕ ∈ H (C; [ x ])
there exists at most one y ∈ E such that y = ϕ̂(x1, . . . , xN ). It is immediate from
the definition that ϕ̂(λ1x, . . . , λNx) is well defined for any (λ1, . . . , λN) ∈ C and
ϕ̂(λ1x, . . . , λNx) = ϕ̂(λ1, . . . , λN)x whenever 0 ≤ x ∈ E. The following proposition
can be proved as [6, Lemma 3.3].

Assume that L is a vector sublattice of E containing {x1, . . . , xN , y} and
ϕ ∈ H (C; [x1, . . . , xN ]). If ω(y) = ϕ(ω(x1), . . . , ω(xN)) (ω ∈ Ω0) for some point
separating set Ω0 of � -valued lattice homomorphisms on L, then y = ϕ̂(x1, . . . , xN ).

2.3. Theorem. Let E be a relatively uniformly complete vector lattice and
x ∈ EN , x = (x1, . . . , xN). Assume that C ⊂ � N is a conic set and [ x ] ⊂ C. Then
x̂(ϕ) := ϕ̂(x1, . . . , xN) exists for every ϕ ∈H (C; [x ]) and the mapping

x̂ : ϕ 7→ x̂(ϕ) = ϕ̂(x1, . . . , xN )
(
ϕ ∈H (C; [ x ])

)

is a unique lattice homomorphism from H (C; [ x ]) into E with d̂tj(x1, . . . , xN) = xj

for j := 1, . . . , N .

C Let H ([ x ]) denotes the vector lattice of all positively homogeneous continuous
functions defined on [ x ]. Then H ([ x ]) is isomorphic to C(Q), where Q := [ x ]∩ � and

� := {s ∈ � N : ‖s‖ := max{|s1|, . . . , |sN |} = 1}. Much the same reasoning as in [6,
Proposition 3.6, Theorem 3.7] shows the existence of a unique lattice homomorphism

h from H ([ x ]) into E such that d̂tj(x1, . . . , xN) = xj (j := 1, . . . , N). Denote by
ρ the restriction operator ϕ 7→ ϕ|[ x ]

(
ϕ ∈ H (C; [ x ])

)
. Then ρ ◦ h is the required

lattice homomorphism. B

Observe that if ϕ, ψ ∈ H (C; [ x ]) and ϕ(t) ≤ ψ(t) for all t ∈ [ x ], then

ϕ̂(x1, . . . , xN ) ≤ ψ̂(x1, . . . , xN). Evidently, |ϕ(t)| ≤ |||ϕ||| · ‖t‖ for all t ∈ [ x ] with
|||ϕ||| := sup{ϕ(t) : t ∈ Q} and hence

|ϕ̂(x1, . . . , xN )| ≤ |||ϕ||| (|x1| ∨ · · · ∨ |xN |) .

In particular, the kernel ker( x̂ ) of x̂ consists of all ϕ ∈H (C; [ x ]) vanishing on [ x ].

2.4. Let K,M,N ∈
�

and consider two conic sets C ⊂ � N and D ⊂ � M . Let
x1, . . . , xN ∈ E, x := (x1, . . . , xN ), [x] ⊂ C, ϕ1, . . . , ϕM ∈ H (C; [ x ]), and denote
ϕ := (ϕ1, . . . , ϕM) and y := (y1, . . . , yN) with yk = ϕ̂k(x1, . . . , xN) (k := 1, . . . ,M).
Suppose that [ y ] ⊂ D, ϕ(C) ⊂ D, and ϕ([ x ]) ⊂ [ y ]. If ψ := (ψ1, . . . , ψK)
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with ψ1, . . . , ψK ∈ H (D; [ y ]), then ψ1 ◦ ϕ, . . . , ψK ◦ ϕ ∈ H (C; [ x ]). Moreover,

ϕ̂(x) := (ϕ̂1(x), . . . , ϕ̂M(x)) ∈ EM , ψ̂(y) := (ψ̂1(y), . . . , ψ̂K(y)) ∈ E
K , and ψ̂ ◦ ϕ(x) :=

(ψ̂1 ◦ ϕ(x), . . . , ψ̂K ◦ ϕ(x)) ∈ E
K are well defined and

̂(ψ ◦ ϕ)(x) = ψ̂(ϕ̂(x)).

2.5. Theorem. Let C and K are conic sets in � N with K closed and K ⊂ C
and let ϕ ∈H (C;K). Then for every ε > 0 there exists a number Rε > 0 such that

|ϕ̂(x + y)− ϕ̂(x)| ≤ ε|||x|||+Rε|||y|||

for any finite collections x = (x1, . . . , xN) ∈ E
N and y = (y1, . . . , yN ) ∈ E

N , provided

that x, y ∈ K̂, x + y ∈ K̂ and |||(u1, . . . , uN)||| stands for |u1| ∨ · · · ∨ |uN |.

C The proof is a duly modification of arguments from [9, Theorem 7]. Denote
K× := {(s, t) ∈ K × K : s + t ∈ K} and define A as the set of all (s, t) ∈ K×

with max{‖s‖, ‖t‖} = 1 and τ(s, t) := |ϕ(s + t) − ϕ(s)| ≥ ε‖s‖, where ‖s‖ :=
max{|s1|, . . . , |sN |}. Then A is a compact subset of K × K and (s, t) 7→ (τ(s, t) −
ε‖s‖)/‖t‖ is a continuous function on A, since ‖t‖ 6= 0 for (s, t) ∈ A. Therefore,

Rε := sup

{
τ(s, t)− ε‖s‖

‖t‖
: (s, t) ∈ A

}
<∞.

Hence τ(s, t) ≤ ε‖s‖ + Rε‖t‖ =: σ(s, t) for all (s, t) ∈ K×. Evidently, τ ∈
H (C×, K×), σ ∈ H ( � N × � N ), and τ ≤ σ on K×. It remains to observe that

(x, y) ∈ K̂× and apply 2.3 and the desired inequality follows. B

2.6. Proposition. Let E and F be uniformly complete vector lattices, E0 a
uniformly closed sublattice of E, and h : E0 → F a lattice homomorphism. Let
C be a conic set in � N , x1, . . . , xN ∈ E0, and ϕ ∈ H (C; [x1, . . . , xN ]). Then
[h(x1), . . . , h(xN)] ⊂ [x1, . . . , xN ] and

h(ϕ̂(x1, . . . , xN )) = ϕ̂(h(x1), . . . , h(xN)).

In particular, if h is the inclusion map E ↪→ F and x1, . . . , xN ∈ E, then the element
ϕ̂(x1, . . . , xN ) relative to F is contained in E and its meaning relative to E is the
same.

C Put yi := h(xi) (i := 1, . . . , N). If ω ∈ Hom(〈y1, . . . , yN〉), then ω̄ := ω◦h belongs
to Hom(〈x1, . . . , xN〉) and (ω(y1), . . . , ω(yN)) = (ω̄(x1), . . . , ω̄(xN)) ∈ [x1, . . . , xN ].
Therefore, [y1, . . . , yN ] is contained in [x1, . . . , xN ]. Now, if y = ϕ̂(y1, . . . , yN), x =
ϕ̂(x1, . . . , xN ), and ω ∈ Hom(〈y, y1, . . . , yN〉), then ω̄ ∈ Hom(〈x, x1, . . . , xN〉) and by
definition

ω(y) = ϕ(ω̄(x1), . . . , ω̄(xN)) = ω̄(ϕ̂(x1, . . . , xN) = ω(h(x)),

so that y = h(x). B

Denote H ∞
Bor( � N, [ x ]) :=

{
ϕ ∈HBor( � N ) : sup{|ϕ(s)| : s ∈ � ∩ [ x ]} < +∞

}
.

2.7. Theorem. Let E be a Dedekind σ-complete vector lattice. For x̂ :=
(x1, . . . , xn) in EN there exists a unique sequentially order continuous lattice
homomorphism

x̂ : ϕ 7→ x̂(ϕ) = ϕ̂(x1, . . . , xN)
(
ϕ ∈H

∞
Bor( � N , [ x ])

)

of H ∞
Bor( � N , [ x ]) into E such that x̂(dtk) = xk (k := 1, . . . , N).
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C Let E0 be the order ideal in E generated by x1, . . . , xN . According to 1.3 there
exists a unique sequentially order continuous lattice homomorphism x̂ of HBor( � N )
into (E0)

uσ, a universal σ-completion of E0, with x̂(dtk) = xk (k := 1, . . . , N). Clearly,
the image of H ∞

Bor( � N , [ x ]) under x̂ is contained in E0. B

3. Examples

Now, we consider extended functional calculus on some special vector lattices E
and for some special functions ϕ. Everywhere in the section ϕ ∈H (C;K).

3.1. Proposition. Let Q be a Hausdorff topological space, X a Banach
lattice, and Cb(Q,X) the Banach lattice of norm bounded continuous functions
from Q to X. Assume that u1, . . . , uN ∈ Cb(Q,X) and [u1, . . . , uN ] ⊂ K. Then
[u1(q), . . . , uN(q)] ⊂ K for all q ∈ Q and

ϕ̂(u1, . . . , uN )(q) = ϕ̂(u1(q), . . . , uN(q)) (q ∈ Q).

C Indeed, for q ∈ Q the map q̂ : Cb(Q,X)→ X defined by q̂ : u 7→ u(q) is a lattice
homomorphism. Therefore, given u1, . . . , uN ∈ Cb(Q,X), by Proposition 2.6 we have
[q̂(u1), . . . , q̂(uN)] ⊂ [u1, . . . , uN ] and q̂(ϕ̂(u1, . . . , uN)) = ϕ̂(q̂(u1), . . . , q̂(uN)) from
which the required is immediate. B

3.2. Suppose now that Q is compact and extremally disconnected. Let u : D → X
be a continuous function defined on a dense subset D ⊂ Q. Denote by D̄ the totality
of all points in Q at which u has limit and put ū(q) := limp→q u(p) for all q ∈ D̄.
Then the set D̄ is comeager in Q and the function ū : D̄ → X is continuous. Recall
that a set is called comeager if its complement is meager. Thus, the function ū is the
“widest” continuous extension of u i.e., the domain of every continuous extension of
u is contained in D̄ and, moreover, ū is an extension of every continuous extension
of u. The function ū is called the maximal extension of u and denoted by ext(u).
A continuous function u : D → X defined on a dense subset D ⊂ Q is said to be
extended, if ext(u) = u. Note that all extended functions are defined on comeager
subsets of Q.

Let C∞(Q,X) stands for the set of all extended X-valued functions. The totality
of all bounded extended functions is denoted by C b

∞(Q,X). Observe that C∞(Q,X)
can be represented also as the set of cosets of continuous functions u that act from
comeager subsets dom(u) ⊂ Q into X. Two vector-valued functions u and v are
equivalent if u(t) = v(t) whenever t ∈ dom(u) ∩ dom(v).

The set C∞(Q,X) is endowed, in a natural way, with the structure of a
lattice ordered module over the f -algebra C∞(Q). Moreover, C∞(Q,X) is uniformly
complete and for any u1, . . . , uN ∈ C∞(Q,X) the element ϕ̂(u1, . . . , uN ) is well
defined in C∞(Q,X) provided that [u1, . . . , uN ] ⊂ K.

3.3. Proposition. Let Q be a extremally disconnected conpact space and X
a Banach lattice. Let u1, . . . , uN ∈ C∞(Q,X) and [u1, . . . , uN ] ⊂ K. Then there
exists a comeager subset Q0 ⊂ Q such that Q0 ⊂ dom(ui) for all i := 1, . . . , N ,
[u1(q), . . . , uN(q)] ⊂ K for every q ∈ Q0, and ϕ̂(u1, . . . , uN ) is the maximal extension
of the continuous function q 7→ ϕ̂(u1(q), . . . , uN(q)) (q ∈ Q0), i. e.

ϕ̂(u1, . . . , uN )(q) = ϕ̂(u1(q), . . . , uN(q)) (q ∈ Q0).

C Put Q′ := dom(u1) ∩ · · · ∩ dom(uN) and observe that Q′ is comeager. There
exists a unique function e ∈ C∞(Q) such that e′(q) := ‖u1(q)‖ + · · · + ‖uN(q)‖



8 A. G. Kusraev

(q ∈ Q′). Let E be the order ideal in C∞(Q) generated by e and define the sublattice
E(X) ⊂ C∞(Q,X) by

E(X) :=
{
u ∈ C∞(Q,X) : (∃ 0 ≤ C ∈ � ) (∀ q ∈ dom(u)) ‖u(q)‖ ≤ Ce(q)

}
.

In the Boolean algebra of clopen subsets of Q there exists a partition of unity(
Q(ξ)

)
ξ∈Ξ

with χQ(ξ)e ∈ C(Q) for all ξ ∈ Ξ. PutQ′ξ := Q′∩Qξ andQ0 :=
⋃

ξ∈ΞQ
′
ξ and

observe that Q0 is comeager in Q. Let πξ stands for the band projection in C∞(Q,X)
defined by πξ : u 7→ χQ(ξ)u. Then πξ(E(X)) ⊂ Cb(Q,X) and (πξui)(q) = ui(q)
(q ∈ Q′ξ; i= 1, . . . , N). Finally, given q ∈ Q′ξ, in view of Propositions 2.6 and 3.1 we
have [u1(q), . . . , uN(q)] = [(πξu1)(q), . . . , (πξuN)(q)] ⊂ K and

(πξϕ̂(u1, . . . , uN ))(q)ϕ̂((πξu1)(q), . . . , (πξuN)(q)) =

= ϕ̂(πξu1, . . . , πξuN)(q) = ϕ̂(u1(q), . . . , uN(q))

and the proof is complete. B

3.4. Let (Ω,Σ, µ) be a measure space with the direct sum property and X be a
Banach lattice. Let L 0(µ,X) := L 0(Ω,Σ, µ,X) be the set of all Bochner measurable
functions defined almost everywhere on Ω with values in X and L0(µ,X) :=
L 0(µ,X)/ ∼ the space of all equivalence classes (of almost everywhere equal)
functions from L 0(µ,X). Then L0(µ,X) is a Banach lattice and hence ϕ̂(u1, . . . , uN)
is well defined in L0(µ,X) for ϕ ∈ H (C;K) and u1, . . . , uN ∈ L0(µ,X) with
[u1, . . . , uN ] ⊂ K. Denote by ũ the equivalence class of u ∈ L 0(µ,X).

Let L∞(µ,X) stand for the part of L 0(µ,X) comprising all essentially bounded
functions and L∞(µ,X) := L∞(µ,X)/ ∼. Put L∞(µ) := L∞(µ, � ) and L∞(µ) :=
L∞(µ, � ). Denote by � ∞(µ) the part of L∞(µ) consisting of all function defined
everywhere on Ω. Then � ∞(µ) is a vector lattice with point-wise operations and
order. Recall that a lattice homomorphism ρ : L∞(µ)→ � ∞(µ) is said to be a lifting

of L∞(µ) if ρ(f) ∈ f for every f ∈ L∞(µ) and ρ( � ) is the identically one function
on Ω. (Here � is the coset of the identically one function on Ω). Clearly, a lifting is

a right-inverse of the quotient homomorphism φ : f 7→ f̃ (f ∈ L∞(µ). The space
L∞(µ) admits a lifting if and only if (Ω,Σ, µ) possesses the direct sum property. If

f ∈ L∞(µ), then the function ρ(f̃) is also denoted by ρ(f).

3.5. Proposition. Let u1, . . . , uN ∈ L 0(Ω,Σ, µ, F ), and [ũ1, . . . , ũN ] ⊂ K. Then
there exists a measurable set Ω0 ⊂ Ω such that µ(Ω\Ω0) = 0, [u1(ω), . . . , uN(ω)] ⊂ K
for all ω ∈ Ω0, and ϕ̂(ũ1, . . . , ũN ) is the equivalence class of the measurable function
ω 7→ ϕ̂(u1(ω), . . . , uN (ω)) (ω ∈ Ω0).

C The problem can be reduced to Proposition 3.2 by means of Gutman’s approach
to vector-valued measurable functions. Let ρ be a lifting of L∞(Ω,Σ, µ) and τ :
Ω → Q be the corresponding canonical embedding of Ω into the Stone space Q
of the Boolean algebra B(Ω,Σ, µ), see [16]. The preimage τ−1(V ) of any meager
set V ⊂ Q is measurable and µ-negligible. Moreover τ is Borel measurable and
v ◦ τ is Bochner measurable for every v ∈ C∞(Q,X). Denote by τ ∗ the mapping
which sends each function v ∈ C∞(Q,X) to the equivalence class of the measurable
function v ◦ τ . The mapping τ ∗ is a linear and order isomorphism of C∞(Q,X)
onto L0(Ω,Σ, µ,X). If σ is the inverse of τ ∗, then [σ(ũ1), . . . , σ(ũN)] ⊂ K and
σϕ̂(ũ1, . . . , ũN ) = ϕ̂(σ(ũ1), . . . , σ(ũN )) by Proposition 2.6. According to Proposition
3.3 there exists a comeager subset Q0 ⊂ Q such that [σ(ũ1)(q), . . . , σ(ũN)(q)] ⊂ K
for all q ∈ Q0 and

ϕ̂(σ(ũ1), . . . , σ(ũN))(q) = ϕ̂
(
σ(ũ1)(q), . . . , σ(ũN)(q)

)
(q ∈ Q0).
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Clearly, the functions u′i := σ(ũi) ◦ τ and ui are equivalent and ϕ̂(ũ1, . . . , ũN) is the
equivalence class of σ(ϕ̂(ũ1, . . . , ũN)) ◦ τ . Let Ω′ stands for the set of all ω ∈ Ω with
u′i(ω) = ui(ω) for all i = 1, . . . , N . Then Ω0 := τ−1(Q0) ∩ Ω′ is measurable and
µ(Ω \ Ω0) = 0. Substituting q = τ(ω) we get [u′1(ω), . . . , u

′
N(ω)] ⊂ K for all ω ∈ Ω0

and

σϕ̂(ũ1, . . . , ũN )(τ(ω)) = ϕ̂
(
u′1(ω), . . . , u

′
N(ω)

)
(ω ∈ Ω0),

which is equivalent to the required statement. B

3.6. A conic set C ⊂ � N is said to be multiplicative if st := (s1t1, . . . , sN tN) ∈ C
for all s := (s1, . . . , sN) ∈ C and t := (t1, . . . , tN) ∈ C. A function ϕ : C → � is
called multiplicative if ϕ(st) = ϕ(s)ϕ(t) for all s, t ∈ C.

Take a subset I ⊂ {1, . . . , N} and define � N
I as the cone in � N consisting of

0 and (s1, . . . , sN) ∈ � N
+ with si > 0 (i ∈ I). We will write xi À 0 (i ∈ I) if

[x1, . . . , xN ] ⊂ � N
I . The general form of a positively homogeneous multiplicative

function ϕ : � N
I → � other that ϕ ≡ 0 is given by

ϕ(t1, . . . , tN) = 0 (t1 · . . . · tN = 0),

ϕ(t1, . . . , tN) = exp(g1(ln t1)) · . . . · exp(gN(ln tN)) (t1 · . . . · tN 6= 0),

where g1, . . . , gN are some additive functions in � with
∑N

i=1 gi = I � . If ϕ is
continuous at any interior point of � N

+ or bounded on any ball contained in � N
I ,

then we get a Kobb–Duglas type function and if, in addition, ϕ is nonnegative, then
ϕ(t1, . . . , tN) = tα1

1 · . . . · t
αN
N with α1, . . . , αN ∈ � and

∑N
i=1 αi = 1.

By definition xi À 0 (i ∈ I) implies that ϕ̂(x1, . . . , xN) is well defined for every
ϕ ∈ H ( � N

I , [x1, . . . , xN ]). Thus, the expression xα1
1 · . . . · x

αN
N is well defined in E

provided that xk À 0 for all k with αk < 0. At the same time ϕ ∈H ( � N
+ ) whenever

I = ∅ and in this case xα1
1 · . . . · x

αN
N is well defined in E for arbitrary xk ≥ 0 and

αk ≥ 0 (k= 1, . . . , N).

3.7. Proposition. Let E, F and G be vector lattices with E and F uniformly
complete and b : E × F → G a lattice bimorphism. Let x := (x1, . . . , xN) ∈ EN ,
y := (y1, . . . , yN) ∈ F

N , and [x] ∪ [y] ⊂ K for some multiplicative closed conic set

K ⊂ � N . If φ ∈ H (C,K) is multiplicative on K, then φ̂(b(x1, y1), . . . , b(xN , yN))
exists in G and

φ̂(b(x1, y1), . . . , b(xN , yN)) = b(φ̂(x1, . . . , xN ), φ̂(y1, . . . , yN )).

C Put u = φ̂(x1, . . . , xN) and v = φ̂(y1, . . . , yN). Let E0 and F0 be the vector
sublattices in E and F generated by {u, x1, . . . , xN} and {v, y1, . . . , yN}, respectively.
Let G0 be the order ideal in G generated by b(e, f) where e := |u|+ |x1|+ · · ·+ |xN |
and f := |v| + |y1| + · · · + |yN |. Observe that Hom(G0) separates the points of G0.
By [23, Theorem 3.2] every � -valued lattice bimorphism on E0 × F0 is of the form
σ ⊗ τ : (x, y) 7→ σ(x)τ(y) with σ ∈ Hom(E0) and τ ∈ Hom(F0). Denote by b0 the
restriction of b to E0 × F0. Given an � -valued lattice homomorphism ω on G0, we
have the representation ω ◦ b = σ ⊗ τ for some lattice homomorphisms σ : E0 → �
and τ : F0 → � . Since K is multiplicative, we have

(
ω(b(x1, y1), . . . , ω(b(xN , yN))

)
=
(
σ(x1)τ(y1), . . . , σ(xN)τ(yN)

)

= (σ(x1), . . . , σ(xN)) · (τ(y1), . . . , τ(yN )) ∈ K,
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and thus [b(x1, y1), . . . , b(xN , yN ] ⊂ K. Now, making use of 2.6 and multiplicativity
of φ we deduce

ω ◦ b(u, v) = σ(φ̂(x1, . . . , xN))τ(φ̂(y1, . . . , yN))

= φ(σ(x1), . . . , σ(xN))φ(τ(y1), . . . , τ(yN ))

= φ(σ(x1)τ(y1), . . . , σ(xN)τ(yN))

= φ(ω ◦ b(x1, y1), . . . , ω ◦ b(xN , yN ))

= ω ◦ φ̂(b(x1, y1), . . . , b(xN , yN )),

as required by definition 2.2. B

3.8. In particular, we can take G := F ⊗ F , the Fremlin tensor product of E
and F , or E¯, the square of E, and put b := ⊗ or b := ¯ in 3.7. Thus, under the
hypotheses of 3.7 we have

φ̂(x1 ⊗ y1, . . . , xN ⊗ yN) = φ̂(x1, . . . , xN )⊗ φ̂(y1, . . . , yN ),

φ̂(x1 ¯ y1, . . . , xN ¯ yN) = φ̂(x1, . . . , xN )¯ φ̂(y1, . . . , yN ).

Taking 3.6 into consideration we get the following: If 0 ≤ α1, . . . , αN ∈ � , α1+ · · ·+
αN = 1, then |x1 ⊗ y1|

α1 · . . . · |xN ⊗ yN |
αN exists in E ⊗ F for all x1, . . . , xN ∈ E

and y1, . . . , yN ∈ F and

N∏

i=1

|xi ⊗ yi|
αi =

( N∏

i=1

|xi|
αi

)
⊗

( N∏

i=1

|yi|
αi

)
;

if, in addition, E = F , then we also have

N∏

i=1

|xi ¯ yi|
αi =

( N∏

i=1

|xi|
αi

)
¯

( N∏

i=1

|yi|
αi

)
.

3.10. Proposition. Let E be a uniformly complete vector lattice, x :=
(x1, . . . , xN ) ∈ EN , p := (π1, . . . , πN) ∈ Orth(E)N , and [x] ∪ [p] ⊂ K for some
multiplicative closed conic set K ⊂ C ⊂ � N . If φ ∈ H (C, [x]) ∩ H (C, [p]) is

multiplicative on K, then φ̂(π1x1, . . . , πNxN)) exists in E and

φ̂(π1x1, . . . , πNxN) = φ̂(π1, . . . , πN)
(
φ̂(x1, . . . , xN)

)
.

C The bilinear operator b from E ×Orth(E) to E defined by b(x, π) := π(x) is a
lattice bimorphism and all we need is to apply Proposition 3.7. B

4. Minkowski Duality

The Minkowski duality is the mapping that assigns to a sublinear function its
support set or, in other words, its subdifferential (at zero). For any Hausdorff locally
convex spaces X the Minkowski duality is a bijection between the collections of all
lower semicontinuous sublinear functions on X and all closed convex subsets of the
conjugate space X ′, see [25, 34]. The extended functional calculus (Theorems 1.3,
2.3, and 2.7) allows to transplant the Minkowski duality to vector lattice setting.

4.1. A function ϕ : � N → � ∪ {+∞} is called sublinear if it is positively

homogeneous, i.e. ϕ(0) = 0 and ϕ(λt) = λϕ(t) for all λ > 0 and t ∈ � N , and
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subadditive, i.e. ϕ(s+t) ≤ ϕ(s)+ϕ(t) for all s, t ∈ � N . A function ψ : � N → � ∪{−∞}
is called superlinear if −ψ is sublinear. We say that ϕ is lower semicontinuous (ψ is
upper semicontinuous) if the epigraph epi(ϕ) := {(t, α) ∈ � N × � : ϕ(t) ≤ α}

(
the

hypograph hypo(ϕ) := {(t, α) ∈ � N× � : ϕ(t) ≥ α}
)

is a closed subset of � N× � . The
effective domain of a sublinear ϕ (superlinear ψ) is dom(ϕ) := {t ∈ � N : ϕ(t) < +∞}(
dom(ψ) := {t ∈ � N : ψ(t) > −∞}

)
. The subdifferential ∂ϕ of a sublinear function

ϕ and the superdifferential ∂ψ of a superlinear function ψ are defined by

∂ϕ := {t ∈ � N : 〈s, t〉 ≤ ϕ(s) (s ∈ � N )},

∂ψ := {t ∈ � N : 〈s, t〉 ≥ ψ(s) (s ∈ � N )},

where s = (s1 . . . , sN), t = (t1 . . . , tN), 〈s, t〉 :=
∑N

k=1 sktk. Denote by H∨( � N , K)
and H∧( � N , K) respectively the sets of all lower semicontinuous sublinear functions
ϕ : � N → � ∪ {+∞} and upper semicontinuous superlinear functions ψ : � N →

� ∪{−∞} which are finite and continuous on a fixed cone K ⊂ � N . Put H∨( � N ) :=
H∨( � N , {0}) and H∧( � N ) := H∧( � N , {0}). We shall consider H∨( � N ) and H∧( � N )
as subcones of the vector lattice of Borel measurable functions HBor( � N ) with the
convention that all infinite values are replaced by zero value.

4.2. Theorem. Let ϕ ∈H∨( � N ) and ψ ∈H∧( � N ). Then there exist countable
subsets A ⊂ ∂ϕ and B ⊂ ∂ψ such that the representations hold:

ϕ(s) = sup{〈s, t〉 : t ∈ A} (s ∈ � N ),

ψ(s) = inf{〈s, t〉 : t ∈ B} (s ∈ � N ).

C The claim is true for A = ∂ϕ and B = ∂ψ in any locally convex space X. The
sets ∂ϕ and ∂ψ may be replaced by their countable subsets A and B provided that
X is a separable Banach space, say X = � N (see [17, Proposition A.1]). B

4.3. Remark. Let H be a linear (or semilinear) subset of E. The support set

∂Hx of x ∈ E with respect to H is the set of all H-minorants of x: ∂Hx := {h ∈ H :
h ≤ x}. The H-convex hull of x ∈ E is defined by coH x := sup{h ∈ H : h ∈ ∂Hx}.
An element x is called H-convex (abstract convex with respect to H) if coH x = x.
Now the problem is to examine abstract convex elements, that is elements which can
be represented as upper envelopes of subsets of a given set of elementary elements.
For this abstract convexity see S. S. Kutateladze and A. M. Rubinov [25], as well as
A. M. Rubinov [35].

In this section we deal with the description of H-convex elements in E in the
event that H is the linear hull of a finite collection {x1, . . . , xN} ⊂ E. The following
two theorems say that under some conditions an element in E is H-convex if and
only if it is of the form x̂(ϕ) for some lower semicontinuous sublinear functions ϕ.

For A ⊂ � N denote by 〈A, x 〉 the set of all linear combinations
∑N

k=1 λkxk in E
with (λ1, . . . , λN) ∈ A, so that

sup 〈A, x 〉 := sup

{ N∑

k=1

λkxk : (λ1, . . . , λN) ∈ A

}
.

4.4. Theorem. Let E be a σ-complete vector lattice with an order unit,
x1, . . . , xN ∈ E, and x := (x1, . . . , xN). Assume that ϕ ∈ H∨( � N ), ψ ∈ H∧( � N ),
and [x] ⊂ dom(ϕ) ∩ dom(ψ). Then x(ϕ) exists in E if and only if 〈 ∂ϕ, x 〉 is order
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bounded above, x(ψ) exists in E if and only if 〈 ∂ψ, x 〉 is order bounded below, and
the representations hold:

x̂(ϕ) = sup 〈 ∂ϕ, x 〉 , x̂(ψ) = inf
〈
∂ψ, x

〉
.

Moreover, ϕ̂(x1, . . . , xN)
(
ψ̂(x1, . . . , xN )

)
is an order limit of an increasing

(decreasing) sequence which is comprised of the finite suprema (infima) of linear

combinations of the form
∑N

i=1 λixi with (λ1, . . . λN) ∈ ∂ϕ
(
(λ1, . . . λN) ∈ ∂ψ

)
.

C Assume that ϕ ∈ H∨( � N ) and [x1, . . . , xN ] ⊂ dom(ϕ). Let E0 denotes the
band in E generated by � := |x1| + · · · + |xN | and by � and Euσ

0 stands for the
universally σ-completion E0. By Theorem 1.3 x̂(ϕ) always exists in E0 and the
required representation holds true in Euσ

0 , since ϕ is Borel. In more details, let ϕ0
vanishes on � N\dom(ϕ) and coincides with ϕ on dom(ϕ). Then ϕ0 is a Borel function
on � N and according to 4.2 we may choose an increasing sequence (ϕn) of Borel
functions such that ϕn coincides with the finite supremum of linear combinations of
the form

∑N
i=1 λiti on dom(ϕ) and (ϕn) converges point-wise to ϕ0. By Theorem 1.3

the sequence (̂x(ϕn)) is increasing and order convergent to x̂(ϕ0) = x̂(ϕ). Now it is
clear that 〈 ∂ϕ, x 〉 is order bounded above in E if and only if x(ϕ) ∈ E0. B

4.5. Theorem. Let E be a relatively uniformly complete vector lattice,
x1, . . . , xN ∈ E, and x := (x1, . . . , xN). If ϕ ∈ H∨( � N ; [ x ]) and ψ ∈ H∧( � N ; [ x ]),
then

x̂(ϕ) = sup 〈 ∂ϕ, x 〉 ,

x̂(ψ) = inf
〈
∂ψ, x

〉
.

Moreover, ϕ̂(x1, . . . , xN)
(
ψ̂(x1, . . . , xN)

)
is a relatively uniform limit of an increa-

sing (decreasing) sequence which is comprised of the finite suprema (infima) of linear

combinations of the form
∑N

i=1 λixi with λ= (λ1, . . . λN) ∈ ∂ϕ (λ ∈ ∂ψ).

C Consider ϕ ∈H∨( � N ; [x1, . . . , xN ]) and denote y = ϕ̂(x1, . . . , xN ). By 2.3

vλ := λ1x1 + . . .+ λNxN ≤ y

for an arbitrary λ := (λ1, . . . , λN) ∈ ∂ϕ. Assume that v ∈ E is such that v ≥ vλ
for all λ ∈ ∂ϕ. By the Krĕıns–Kakutani Representation Theorem there is a lattice
isomorphism x 7→ x̃ of the principal ideal Eu generated by u = |x1|+ . . .+ |xN |+ |v|
onto C(Q) for some compact Hausdorff space Q. Then v, x1, . . . , xN , vλ, and y lie
in Eu and for any λ ∈ ∂ϕ the point-wise inequality ṽ(q) ≥ ṽλ(q) (q ∈ Q) is true. By
3.1 and 2.6 we conclude that

ỹ(q) = ϕ(x̃1(q), . . . , x̃N (q)) = sup{ṽλ(q) : λ ∈ ∂ϕ} ≤ ṽ(q).

Thus we have y ≤ v and thereby y = sup{vλ : λ ∈ ∂ϕ}.
Put U := {vλ : λ ∈ ∂ϕ

}
and denote by U∨ the subset of E consisting of the

suprema of the finite subsets of U . Then U∨ ⊂ Eu and the set Ũ∨ := {ṽ : v ∈ U∨} is
upward directed in C(Q) and its point-wise supremum equals to ỹ. By Dini Theorem

Ũ∨ converges to ỹ uniformly and thus U∨ is norm convergent to y in Eu. The
superlinear case ψ ∈H∧( � N ; [x1, . . . , xN ]) is considered in a similar way. B

4.6. In some situation it is important to know wether the function is the upper
or lower envelope of a family of increasing linear functionals. Suppose that � N is
preordered by a cone K ⊂ � N , i. e s ≥ t means that s − t ∈ K. The dual cone
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of positive linear functionals is denoted by K∗. A function φ : � N → � ∪ {±∞}
is called increasing (with respect to K) if s ≥ t implies φ(s) ≥ φ(t). A lower
semicontinuous sublinear (an upper semicontinuous superlinear) φ is increasing if
and only if ∂φ ⊂ K∗ (∂φ ⊂ K∗) and thus φ is an upper envelope of a family of
increasing linear functionals (is a lower envelope of a family of increasing linear
functionals). If φ is increasing only on dom(φ), then this claim is no longer true but
under some mild conditions it is still valid for the restriction of φ onto dom(φ), see
[25, 35].

Proposition. Let ϕ : � N → � ∪ {+∞} and ψ : � N → � ∪ {−∞} be the same
as in Theorem 4.2. Suppose that, in addition, dom(ϕ) − K = K − dom(ϕ) and
dom(ψ)−K = K − dom(ψ). Then the following assertions hold:

(1) ϕ is increasing on dom(ϕ) if and only if

ϕ(s) = sup{〈s, t〉 : t ∈ (∂ϕ) ∩K∗} (s ∈ dom(ϕ));

(2) ψ is increasing on dom(ψ) if and only if

ψ(s) = inf{〈s, t〉 : t ∈ (∂ψ) ∩K∗} (s ∈ dom(ψ)).

C Indeed, we may assume � N = dom(ϕ)−K and then the function ϕ∗ : � N → �
defined by ϕ∗(s) = inf{ϕ(t) : t ∈ dom(ϕ), t ≥ s} (s ∈ � N ) is increasing and
sublinear and coincides with ϕ on dom(ϕ); moreover ∂ϕ∗ = (∂ϕ) ∩ K∗. Similarly,
assuming � N = dom(ψ)−K, we deduce that the function ψ∗ : � N → � defined by
ψ∗(s)= sup{ψ(t) : t ∈ dom(ψ), t ≤ s} (s ∈ � N ) is increasing and superlinear and
agrees with ψ on dom(ψ); moreover, ∂ψ∗ = (∂ψ)∩K∗. It remains to observe that ϕ
and ψ are increasing if and only if ϕ = ϕ∗ and ψ = ψ∗. B

4.7. Corollary. Assume that ϕ is increasing on dom(ϕ), ψ is increasing on
dom(ψ), dom(ϕ) − K = K − dom(ϕ), and dom(ψ) − K = K − dom(ψ). If, in
addition, the assumptions of either 4.4 or 4.5 are fulfilled, then in 4.4 and 4.5 the
sets ∂ ϕ and ∂ϕ may be replaced by (∂ ϕ) ∩K∗ and (∂ψ) ∩K∗.

4.8. A gauge is a sublinear function ϕ : � N → � + ∪ {+∞}. A co-gauge is a
superlinear function ψ : � N → � + ∪ {−∞}. The lower polar function ϕ◦ of a gauge
ϕ and the upper polar function ψ◦ of a co-gauge ψ are defined by

ϕ◦(t) := inf{λ ≥ 0 : (∀ s ∈ � N ) 〈s, t〉 ≤ λϕ(s)} (t ∈ � N ),

ψ◦(t) := sup{λ ≥ 0 : (∀ s ∈ � N ) 〈s, t〉 ≥ λψ(s)} (t ∈ � N )

(with the conventions sup∅ = −∞, inf ∅ = +∞, and 0(+∞) = 0(−∞) = 0). Thus,
ϕ◦ is a gauge and ψ◦ is a co-gauge. Observe also that the inequalities hold:

〈s, t〉 ≤ ϕ(s)ϕ◦(t) (s ∈ dom(ϕ), t ∈ dom(ϕ◦)),

〈s, t〉 ≥ ψ(s)ψ◦(t) (s ∈ dom(ψ), t ∈ dom(ψ◦)).

Denote ϕ◦◦ := (ϕ◦)◦ and ψ◦◦ := (ψ◦)◦.

4.9. Bipolar Theorem. Let ϕ be a gauge and ψ be a co-gauge. Then ϕ◦◦ = ϕ
if and only if ϕ is lower semicontinuous and ψ◦◦ = ψ if and only if ψ is upper
semicontinuous.

C See [34]. B

4.10. The lower polar function ϕ◦ is a gauge and can be also calculate by

ϕ◦(t) = sup
s∈ � N

〈s, t〉

ϕ(s)
= sup{〈s, t〉 : s ∈ � N , ϕ(s) ≤ 1} (t ∈ � N ),
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(with the conventions α/0 = +∞ for α > 0 and α/0 = 0 for α ≤ 0) and

ψ◦(t) = inf
s∈ � N

〈s, t〉

ψ(s)
= inf{〈s, t〉 : s ∈ � N , ψ(s) ≥ 1 or ψ(s) = 0} (t ∈ � N )

(with the conventions α/0 = +∞ for α ≥ 0 and α/0 = −∞ for α < 0).
Denote by G∨( � N , K) and G∧( � N , K) respectively the sets of all lower

semicontinuous gauges ϕ : � N → � + ∪ {+∞} and upper semicontinuous co-gauges
ψ : � N → � + ∪{−∞} which are finite and continuous on a fixed cone K ⊂ � N . Put
G∨( � N ) := G∨( � N , {0}) and G∧( � N ) := G∧( � N , {0}). Observe that G∨( � N ) ⊂H∨( � N )
and G∧( � N ) ⊂H∧( � N ).

4.11. Corollary. Assume that either the assumptions of 4.4 are fulfilled and, in
addition, ϕ ∈ G∨( � N ) and ψ ∈ G∧( � N ), or the assumptions of 4.5 are fulfilled and
additionally ϕ ∈ G∨( � N ; [ x ]) and ψ ∈ H∧( � N ; [ x ]). Then in 4.4 and 4.5 the sets
∂ ϕ and ∂ϕ may be replaced by {t ∈ � N : ϕ◦(t) ≤ 1} and {t ∈ � N : ψ◦(t) ≥ 1},
respectively.

C It is immediate from the Bipolar Theorem and the above definitions, since
obviously ∂ ϕ = {t ∈ � N : ϕ◦(t) ≤ 1} and, ∂ ψ = {t ∈ � N : ψ◦(t) ≥ 1}. B

5. Convexity Inequalities

According to Minkowski duality lower semicontinuous sublinear functions and
upper semicontinuous superlinear functions are respectively upper and lower
envelopes of families of linear functions. This fact can be used for proving inequalities
and such approach is often called the quasilinearization method, see [2, 32]. Below we
show that the same approach works in abstract setting and prove Jensen’s, Hölder’s,
and Minkowski’s inequalities in uniformly complete vector lattices.

5.1. Given a cone K ⊂ � N , denote by Hg( � N, K) (Hf( � N, K)) the set of all
sublinear (superlinear) functions φ : � N → � ∪ {+∞} ( � ∪ {−∞}) with the
properties: a) φ is lower semicontinuous (upper semicontinuous), b) K ⊂ dom(φ)
and φ is continuous on K, c) φ is increasing on dom(φ) with respect to � N

+ ,
d) � N

+ − dom(φ) = dom(φ)− � N
+ .

Let E and F be vector lattices. An operator f : E → F ∪ {+∞} is said to be
sublinear if f(0) = 0, f(λx) = λf(x), and f(x+ y) ≤ f(x) + f(y) for all 0 ≤ λ ∈ �
and x, y ∈ E. A superlinear operator g : E → F ∪ {−∞}, dom(f) and dom(g), are
defined as in 4.1. We say that f is increasing on dom(f) if x ≥ y implies f(x) ≥ f(y)
for x, y ∈ dom(f). For more details concerning sublinear operators, see [22].

5.2. Theorem (The generalized Jensen inequalities). Let E and F be
relatively uniformly complete vector lattices, f : E → F ∪ {+∞} an increasing
sublinear operator, and g : E → F ∪ {−∞} an increasing superlinear operator.
Assume that ϕ ∈Hg( � N, K) and ψ ∈Hf( � N, K). If x1, . . . , xN ∈ dom(f)∩ dom(g)

and [x1, . . . , xN ] ⊂ K, then ϕ̂(x1, . . . , xN) ∈ dom(g), ψ̂(x1, . . . , xN) ∈ dom(f) and

f
(
ψ̂(x1, . . . , xN)

)
≤ ψ̂

(
f(x1), . . . , f(xN)

)
,

g
(
ϕ̂(x1, . . . , xN )

)
≥ ϕ̂

(
g(x1), . . . , g(xN)

)
.

C According to 4.6 we have the following representation

ψ(s) = inf
{
〈s, t〉 : t ∈ (∂ψ) ∩ � N

+

}
(s ∈ dom(ψ)),
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since ψ is increasing on dom(ψ) and ( � N
+ )
∗ = � N

+ . Now, using 4.6 and taking into
consideration that f is sublinear and increasing, we deduce

f(ψ̂(x1 . . . , xN))

≤ inf{f(λ1x1 + · · ·+ λNxN) : (λ1, . . . , λN) ∈ (∂ψ) ∩ � N
+}

≤ inf{λ1f(x1) + · · ·+ λNf(xN) : (λ1, . . . , λN) ∈ (∂ψ) ∩ � N
+}

= ψ̂(f(x1), . . . , f(xN)).

The second inequality is handled in a similar way. B

5.3. Remark. The given simple proof contains some additional possibilities.

(1) The inequalities from 5.2 remain valid if ϕ ∈H∨( � N, K), ψ ∈H∧( � N, K),
and f, g : E → F are positive linear operators. In this case f and g are actually
homogeneous (not only positively homogeneous!) and, for (λ1, . . . , λN) in ∂ψ or in
∂ϕ, there is no need to involve the additional requirement (λ1, . . . , λN) ∈ � N

+ .
(2) If E and F are Dedekind σ-complete then the classes of admissible ϕ

and ψ in 5.2 may be extended: the generalized Jensen inequalities remain valid if

ϕ ∈ H∨( � N ) and ψ ∈ H∧( � N ), provided that ϕ̂(x1 . . . , xN) and ψ̂(x1 . . . , xN) are
well defined in E. Indeed we need only to refer to 4.4 instead of 4.5.

(3) Equalities hold in 5.2 in the following cases: (a) in addition to hypotheses
of Theorem 5.2, f, g : E → F are lattice homomorphisms; (b) all hypotheses
from 5.3 (2) are fulfilled and f, g : E → F are sequentially order continuous
lattice homomorphisms. Indeed, according to Theorems 4.4 and 4.5 we can choose
a decreasing sequence ϕn which consists of the finite infima of linear functions
of the form t 7→ 〈t, λ〉 with λ ∈ ∂ϕ such that ϕ̂n(x1, . . . , xN ) converges to
ϕ̂(x1, . . . , xN ) uniformly in case (a) and in order in case (b). It remains to observe
that f(ϕ̂n(x1, . . . , xN)) = ϕ̂n(f(x1), . . . , f(xN)) and pass to the o-limit or u-limit as
n→ +∞.

5.4. Corollary. Let E be a Dedekind σ-complete Banach lattice, (Ω,Σ, µ) a
measure space with the direct sum property, and x1, . . . , xN ∈ L 1(Ω,Σ, µ, E). If
ϕ ∈ H∨( � N, K), ψ ∈ H∧( � N, K), and [x̃1, . . . , x̃N ] ⊂ K, then [x1(ω), . . . , xN(ω)] ⊂
K for almost all ω ∈ Ω and

∫

Ω

ψ̂(x1(ω), . . . , xN(ω)) dµ(ω) ≤ ψ̂

(∫

Ω

x1(ω) dµ(ω), . . . ,

∫

Ω

xN(ω) dµ(ω)

)
,

∫

Ω

ϕ̂(x1(ω), . . . , xN(ω)) dµ(ω) ≥ ϕ̂

(∫

Ω

x1(ω) dµ(ω), . . . ,

∫

Ω

xN(ω) dµ(ω)

)
.

C The Bohner integral defines a positive linear operator x̃ 7→ Iµ(x̃) :=∫
Ω
x(ω) dµ(ω) from L1(Ω,Σ, µ, E) to E. Therefore, we can apply Theorem 5.2 with

f := Iµ taking Remark 5.3 (2) into consideration and using Proposition 3.5. B

5.5. The generalized Hölder inequality. Let E and F be relatively uniformly
complete vector lattices and let f : E → F ∪ {+∞} be an increasing sublinear
mapping with dom(f) = E+. Then for x1, . . . , xN ∈ E and 0 ≤ α1, . . . , αN ∈ � ,
with α1 + · · ·+ αN = 1 we have

f

( N∏

i=1

|xi|
αi

)
≤

N∏

i=1

f(|xi|)
αi .
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The reverse inequality holds provided that f : E → F{−∞} is superlinear, α1 +
· · ·+αN = 1, (−1)k(1−α1−· · ·−αk)α1 · . . . ·αk ≥ 0 (k := 1, . . . , N−1), and xi À 0,
f(xi)À 0 for all i with αi < 0.

C Let α1+ · · ·+αN = 1. The function φ(t1, . . . , tN) = tα1
1 · · · · · t

αN
N is superlinear

on � N
+ if 0 ≤ α1, . . . , αN and sublinear on � N

I (see 3.6) with I := {i ∈ {1, . . . , N} :
αi < 0} whenever αi, xi, and f(xi) obey the latter conditions. B

5.6. The generalized Minkowski inequality. Let E and F be relatively
uniformly complete vector lattices, f : E → F ∪ {+∞} be an increasing sublinear
mapping with dom(f) = E+, and x1, . . . , xN ∈ E. If either and 0 < α ≤ 1 or α < 0
and additionally xi À 0 and f(xi)À 0 for all i := 1, . . . , N , then

f

(( N∑

i=1

|xi|
α

)1/α)
≤

( N∑

i=1

f(|xi|)
α

)1/α
.

The reverse inequality holds if f : E → F ∪ {−∞} is superlinear and α ≥ 1.

C The function φ(t1, . . . , tN) =
(
tα1
1 + · · · + tαN

N

)1/α
is superlinear on � N

+ if 0 <
α < 1, superlinear on int( � N

+ ) if α < 0, and sublinear on � N
+ if α ≥ 1. B

5.7. Remark. The generalized Hölder and Minkowski inequalities as they stand

in 5.5 and 5.6 were obtained in [20] making use of the representations (0 < α < 1):

sαt1−α = inf{αλ1/αs+ (1− α)λ−1/(1−α)t : 0 < λ ∈ � },
(sα + tα)1/α = inf{λ−1/αs+ (1− λ)−1/αt : 0 < λ < 1, λ ∈ � }.

Equalities hold in 5.5 and 5.6 if f and g are lattice homomorphisms, see 5.3 (3). In
the special case of vector lattices of measurable functions the first inequality from
5.2 as well as 5.5 (0 < αk < 1) and 5.6 (0 < α < 1) were established by M. Haase [17,
Proposition 1.1, Remarks 1.2 (5) and 1.2 (6)]. Some special cases of 5.3 (and other
interesting results) were also obtained by R. Drnovšek and A. Peperko in [10]. Various
classical and recent inequalities are related to Hölder’s or Minkowski’s inequality
(see E. F. Beckenbach, R. Bellman [2]; D. S. Mitrinović, J. E. Pečarić, A. M. Fink [32]).
Some of them can naturally be transferred into the environment of vector lattice. By
way of example we consider one more result that generalizes the inequality obtained
by J. E. Pečarić and P. R. Beesack (see [32, Ch. VI, §4, Theorem 4]).

5.8. Proposition. Let E and F be relatively uniformly complete vector lattices,
f : E → F ∪ {+∞} be an increasing sublinear mapping, g : E → � ∪ {−∞}
an increasing superlinear function, and dom(f) = dom(g) = E+. Suppose that
x1, . . . , xN ∈ E and y1, . . . , yN ∈ E with g(|yi|) > 0 (i := 1, . . . , N). Then for
α, β ∈ � , 0 < α < 1 ≤ β, we have

f

((∑N
i=1 |xi|

α
) 1
α

)

g

((∑N
i=1 |yi|

β
) 1
β

) ≤
(

N∑

i=1

(
f(|xi|)

g(|yi|)

) αβ
β−α

)β−α
αβ

.

C Let A stands for the left-hand side of the required inequality. Put γ := αβ/(β−
α), σ := β/(β − α), and τ := −α/(β − α). Denote ui = f(|xi|)

γ and ai = g(|yi|)
−γ

and observe that ui is well defined in the universal completion F u of F with a fixed
order unit. Now, first apply Minkowski inequality to f and 0 < α < 1 and reverse
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Minkowski inequality to g and β ≥ 1 (see 5.6), and then use reverse Hölder inequality

(see 5.5) in F u for the sum
∑N

i=1 aiui with powers σ and τ taking into account that
σ/γ = 1/α and τ/γ = −1/β:

A ≤

( N∑

i=1

f(|xi|)
α

) 1
α

·

( N∑

i=1

g(|yi|)
β

)− 1
β

=

(( N∑

i=1

u
1
σ

)σ

·

( N∑

i=1

a
1
τ

)τ) 1
γ

≤

( N∑

i=1

aiui

) 1
γ

=

(
N∑

i=1

(
f(|xi|)

g(|yi|)

)γ
) 1

γ

.

Thus, the required inequality is true in F u and hence in F , since both sides are well
defined in F . B

6. Inequalities for Bilinear Operators

In this section we deduce a Maligranda type inequality for positive bilinear
operators on uniformly complete vector latices using the above machinery.

6.1. The Fremlin tensor product E ⊗ F need not be uniformly complete even
for uniformly complete E and F . Therefore, the expressions of the form ϕ̂(x1 ⊗
y1, . . . , xN⊗yN) with continuous positively homogeneous ϕ are generally meaningless

in E ⊗ F . Denote by E⊗̃F the uniform completion of E ⊗ F , see for example [33,
Theorem 2.13]. Of course, ϕ̂(x1 ⊗ y1, . . . , xN ⊗ yN) is well defined in E⊗̃F provided
that [x1 ⊗ y1, . . . , xN ] ⊂ dom(ϕ).

It is quite natural to consider E⊗̃F as the tensor product in the category of
uniformly complete vector lattices and positive (or regular) operators. One can
easily prove that E⊗̃F shares the important universal property of Fremlin’s tensor
products E ⊗F (see [11, Theorem 5.3]): If G is a uniformly complete vector lattice,
then for every positive bilinear operator b : E×F → G there exists a unique positive
linear operator T : E⊗̃F → G such that b = T⊗. Moreover, b is a lattice bimorphism
if and only if T is a lattice homomorphism.

6.2. Now we are going to prove a general Maligranda type inequality for positive
bilinear operators. Consider a multiplicative conic set K ⊂ � N , see 3.8. A triple of
functions (ϕ0, ϕ1, ϕ2) is called C-submultiplicative (C-supermultiplicative) on K if
K ⊂ dom(ϕi) (i := 0, 1, 2) and

ϕ1(s)ϕ2(t) ≥ Cϕ0(st)
(
ϕ1(s)ϕ2(t) ≤ Cϕ0(st)

)

for some positive 0 < C ∈ � and all s, t ∈ K. In the special case N = 2 and K = � N
+

these inequalities are equivalent to

ϕ1(1, s)ϕ2(1, t) ≥ Cϕ0(1, st),
(
ϕ1(1, s)ϕ2(1, t) ≤ Cϕ0(1, st)

)
(0 < s, t ∈ � ).

Maligranda [31, Theorem 1] proved that if ϕ, ϕ0, ϕ1 are continuous gauges on � 2 and
the triple (ϕ, ϕ0, ϕ1) is C-supermultiplicative, then for any positive bilinear operator
T : (E + F ) × (E + F ) → L0(Ω,Σ, µ) with E and F ideal spaces on (Ω,Σ, µ) the
inequality holds

T (ϕ0(|x0|, |x1|), ϕ1(|y0|, |y1|)) ≤ Cϕ(T (|x0|, |x1|), T (|y0|, |y2|))

for all x0, y0 ∈ E and x1, y1 ∈ F .
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6.3. Lemma. Let E, F , and G be uniformly complete vector lattices, b : E×F →
G be a positive bilinear operator and a positive linear operator Φb : E⊗̃F → G be
the linearization of b via tensor product, i.e., b = Φb⊗. Let ϕ ∈ H∨( � N , K) and
ψ ∈H∧( � N, K) for some cone K ⊂ � N . Then for x1, . . . , xN ∈ E and y1, . . . , yN ∈ F
with [b(x1, y1), . . . , b(xN , yN)] ⊂ K and [x1 ⊗ y1, . . . , xN ⊗ yN ] ⊂ K we have

ϕ̂(b(x1, y1), . . . , b(xN , yN)) ≤ Φb

(
ϕ̂(x1 ⊗ y1, . . . , xN ⊗ yN)

)
,

ψ̂(b(x1, y1), . . . , b(xN , yN)) ≥ Φb

(
ψ̂(x1 ⊗ y1, . . . , xN ⊗ yN)

)
.

Equalities hold whenever b is a lattice hamomorphism.

C Apply Jensen’s inequalities 5.2 with f = g = Φb taking into consideration
Remarks 5.3 (2) and 5.3 (3). B

6.4. Lemma. Let E and F be uniformly complete vector lattices, x1, . . . , xN ∈ E
and y1, . . . , yN ∈ E. Suppose that ψ0, ψ1, ψ2 ∈ G∨( � N , K), ϕ0, ϕ1, ϕ2 ∈ G∧( � N , K)
with a multiplicative close conic set K ⊂ � N , and the triple (ϕ0, ϕ1, ϕ2) and
(ψ0, ψ1, ψ2) are C-supermultiplicative and C-submultiplicative on K, respectively.
If [x1, . . . , xN ] ⊂ K and [y1, . . . , yN ] ⊂ K, then [x1 ⊗ y1, . . . , xN ⊗ yN)] ⊂ K and

ϕ̂1(x1, . . . , xN)⊗ ϕ̂2(y1, . . . , yN) ≤ Cϕ̂0(x1 ⊗ y1, . . . , xN ⊗ yN),

ψ̂1(x1, . . . , xN)⊗ ψ̂2(y1, . . . , yN) ≥ Cψ̂0(x1 ⊗ y1, . . . , xN ⊗ yN).

C Put u = ϕ̂1(x1, . . . , xN ) and v = ϕ̂2(y1, . . . , yN). Let E0 and F0 be the vector
sublattices in E and F generated by {u, x1, . . . , xN} and {v, y1, . . . , yN}, respectively.

According to [11, Corollary 4.5] G0 := E0 ⊗ F0 is the sublattice of E ⊗ F generated
by E0 ⊗ F0. Let G stands for the G0-closure of G0 in E⊗̃F . Then G is a uniformly
complete sublattice of E⊗̃F and any real valued lattice homomorphism on G0
extends uniquely to a real valued lattice homomorphism on G, see [8, Lemma 1.1].
Therefore, the set H of all lattice homomorphisms ρ : G → � with ρ⊗ = σ ⊗ τ
for some σ ∈ Hom(E0) and τ ∈ Hom(F0) separates the points of G. The relations
[x1, . . . , xN ] ⊂ K and [y1, . . . , yN ] ⊂ K imply [x1 ⊗ y1, . . . , xN ⊗ yN)] ⊂ K, since K
is multiplicative. Thus we can conclude that ϕ̂0((x1 ⊗ y1, . . . , xN ⊗ yN)) exists in G
and

ρ(ϕ̂0(x1 ⊗ y1, . . . , xN ⊗ yN)) = ϕ0(ρ(x1 ⊗ y1), . . . , ρ(xN ⊗ yN))

for all ρ ∈ H. Now, making use of Proposition 2.6 and C-supermultiplicativity of
the triple (ϕ0, ϕ1, ϕ2) we deduce

ρ(u⊗ v) = σ(u)τ(v) = ϕ1(σ(x1), . . . , σ(xN ))ϕ2(τ(y1), . . . , τ(yN ))

≤ Cϕ0(σ(x1)τ(y1), . . . , σ(xN)τ(yN))

= Cϕ0((σ ⊗ τ)(x1, y1), . . . , (σ ⊗ τ)(xN , yN ))

= ρ(Cϕ̂0(x1 ⊗ y1, . . . , xN ⊗ yN)).

Since H separates the points of G, we have u⊗v ≤ Cϕ̂0(x1⊗y1, . . . , xN ⊗yN)). The
second inequality is derived in a similar way. B

6.5. Theorem. Let E, F , and G be uniformly complete vector lattices, b :
E × F → G a positive bilinear operator, x1, . . . , xN ∈ E and y1, . . . , yN ∈ E.
Suppose that ψ0, ψ1, ψ2 ∈ G∨( � N , K), ϕ0, ϕ1, ϕ2 ∈ G∧( � N , K) with a multiplicative
closed conic setK ⊂ � N , the triple (ϕ0, ϕ1, ϕ2) is C-supermultiplicative onK and the
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triple (ψ0, ψ1, ψ2) is C-submultiplicative onK. If [x1, . . . , xN ] ⊂ K, [y1, . . . , yN ] ⊂ K,
and [b(x1, y1), . . . , b(xN , yN)] ⊂ K, then

b(ϕ̂1(x1, . . . , xN), ϕ̂2(y1, . . . , yN)) ≤ Cϕ̂0(b(x1, y1), . . . , b(xN , yN)),

b(ψ̂1(x1, . . . , xN), ψ̂2(y1, . . . , yN)) ≥ Cψ̂0(b(x1, y1), . . . , b(xN , yN )).

C Let a positive linear operator Φb : E⊗̃F → G be the linearization of b via
tensor product, so that b = Φb⊗. Observe that all hypothesis of Lemma 6.4 are
fulfilled. Applying Φb to the inequalities from Lemma 6.4 we get

b(ϕ̂1(x1, . . . , xN ), ϕ̂2(y1, . . . , yN)) ≤ CΦb(ϕ̂0(b(x1, y1), . . . , b(xN , yN))),

b(ψ̂1(x1, . . . , xN), ψ̂2(y1, . . . , yN )) ≥ CΦb(ψ̂0(b(x1, y1), . . . , b(xN , yN))).

It remains to apply Lemma 6.3. B

6.6. Corollary. Let E, F , and G be relatively uniformly complete vector lattices,
x := (x1, . . . , xN ) ∈ EN , and y := (y1, . . . , yN ) ∈ FN . Let ϕ ∈ G∨( � N , K), ψ ∈
G∧( � N , K) with a multiplicative closed conic set K ⊂ � N and [x] ∪ [y] ⊂ K. Then
for any positive bilinear operator b : E × F → G we have

N∑

k=1

b(xk, yk) ≤ b(ϕ̂(x1, . . . , xN), ϕ̂◦(y1, . . . , yN)),

N∑

k=1

b(xk, yk) ≥ b(ψ̂(x1, . . . , xN), ψ̂◦(y1, . . . , yN )).

C Put λ(s) := s1 + · · · + sN (s = (s1, . . . , sN)). The triples (λ, ϕ, ϕ◦) and
(λ, ψ, ψ◦) are 1-submultiplicative and 1-supermultiplicative, respectively, see 4.8.

Since λ̂(u1, . . . , uN ) = u1 + · · ·+ uN , we need only to apply Theorem 6.5. B

6.7. Corollary. Let E be a uniformly complete vector lattices, F be a Dedekind
complete vector lattice, x1, . . . , xN ∈ E, and T1, . . . , TN ∈ L

∼(E,F ). Suppose that
ψ0, ψ1, ψ2 ∈ G∨( � N , K) and ϕ0, ϕ1, ϕ2 ∈ G∧( � N , K), the triple (ϕ0, ϕ1, ϕ2) is C-
supermultiplicative on K and the triple (ψ0, ψ1, ψ2) is C-submultiplicative on K. If
[x1, . . . , xN ] ⊂ K, [y1, . . . , yN ] ⊂ K, and [T1x1, . . . , TNxN)] ⊂ K, then

ϕ̂2(T1, . . . , TN )
(
ϕ̂1(x1, . . . , xN)

)
≤ Cϕ̂0(T1x1, . . . , TNxN),

ψ̂2(T1, . . . , TN )
(
ψ̂1(x1, . . . , xN )

)
≥ Cψ̂0(T1x1, . . . , TNxN).

C Apply Theorem 6.5 to positive bilinear operator b from E × L∼(E,F ) to F
defined by b(x, T ) := Tx. B

6.8. Corollary. Let E and F be relatively uniformly complete vector lattices,
x := (x1, . . . , xN ) ∈ EN , and T := (T1, . . . , TN ) ∈ L∼(E,F )N . Let ϕ ∈ G∨( � N , K),
ψ ∈ G∧( � N , K), and [x] ∪ [T] ⊂ K. Then we have

N∑

k=1

Tkxk ≤ ϕ̂◦(T1, . . . , TN )(ϕ̂(x1, . . . , xN)),

N∑

k=1

Tkxk ≥ ψ̂◦(T1, . . . , TN )(ψ̂(x1, . . . , xN)).
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C Apply 6.6 to positive bilinear operator b from E × L∼(E,F ) to F defined by
b(x, T ) := Tx. B

7. Functions of Bilinear Operators

In this section we compute ϕ(b1, . . . , bN) for regular bilinear operators b1, . . . , bN .
A partition of x ∈ E+ is any finite sequence (x1, . . . , xn), n ∈

�
, of elements of E+

whose sum equals x. Denote by Prt(x) and DPrt(x) the sets of all partitions of x
and all partitions with pairwise disjoint terms, respectively.

7.1. Lemma. Let E, F , and G be vector lattices, b1, . . . , bN ∈ BL
r(E,F ;G), and

b := (b1, . . . , bN). Let ϕ ∈ H∨( � N ), ψ ∈ H∧( � N ), ϕ̂(b1(x0, y0), . . . , bN(x0, y0)) and

ψ̂(b1(x0, y0), . . . , bN(x0, y0)) are well defined in G for all 0 ≤ x0 ≤ x and 0 ≤ y0 ≤ y.
Denote x := (x1, . . . , xn) ∈ E

n and y := (y1, . . . , ym) ∈ F
m. Then the sets

ϕ(b;x, y) :=
{ n∑

i=1

m∑

j=1

ϕ̂(b1(xi, yj), . . . , bN(xi, yj)) : n,m ∈
�
, x ∈ Prt(x), y ∈ Prt(y)

}
,

ψ(b;x, y) :=
{ n∑

i=1

m∑

j=1

ψ̂(b1(xi, yj), . . . , bN(xi, yj)) : n,m ∈
�
, x ∈ Prt(x), y ∈ Prt(y)

}
,

are upward directed and downward directed, respectively.

C Assume that (x1, . . . , xn) and (x′1, . . . , x
′
n′) are partitions of x while (y1, . . . , ym)

and (y′1, . . . , y
′
m′) are partitions of y. By the Riesz Decomposition Property of vector

lattices there exist finite double sequences (ui,j)i≤n, j≤n′ in E+ and (vi,j)i≤m, l≤m′ in
F+ such that

∑n′

k=1
ui,k = xi,

∑n

i=1
ui,k = x′k

(
i := 1, . . . , n, k := 1, . . . , n′

)
.

∑m′

l=1
vj,l = yj,

∑m

i=1
vj,l = y′l

(
j := 1, . . . ,m, l := 1, . . . ,m′

)
.

In particular, (ui,k)i≤n, k≤n′ and (vi,l)i≤m, j≤m′ are partition of x and y, respectively.
Taking subadditivity of ϕ into consideration we obtain

n,m∑

i,j=1

ϕ(b1(xi, yj), . . . , bN(xi, yj))

=

n,m∑

i,j=1

ϕ

( n′,m′∑

k,l=1

b1(ui,k, vj,l), . . . ,

n′,m′∑

k,l=1

bN(ui,k, vj,l)

)

=

n,m∑

i,j=1

ϕ

( n′,m′∑

k,l=1

(
b1(ui,k, v(j, l)), . . . , bN(ui,k, vj,l)

))

≤

n,m∑

i,j=1

n′,m′∑

k,l=1

ϕ(b1(ui,k, vj,l), . . . , bN(ui,k, vj,l)).
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In a similar way we get

n′,m′∑

i,j=1

ϕ(b1(x
′
i, y

′
j), . . . , bN(x

′
i, y

′
j) ≤

n′,m′∑

i,j=1

n,m∑

k,l=1

ϕ(b1(ui,k, vj,l), . . . , bN(ui,k, vj,l)),

so that the first set is upward directed. Similarly, the second set is downward
directed. B

7.2. Lemma. Let Let E, F , and G be vector lattices with G Dedekind complete
and B be an order bounded set of regular bilinear operators from E×F to G. Then
for every x ∈ E+ and y ∈ F+ we have:

(supB)(x, y) = sup

{
n∑

i=1

m∑

j=1

bk(i,j)(xi, yj)

}
,

(inf B)(x, y) = inf

{
n∑

i=1

m∑

j=1

bk(i,j)(xi, yj)

}
,

where supremum and infimum are taken over all naturals n,m, l ∈
�
, functions

k : {1, . . . , n} × {1, . . . ,m} → {1, . . . , l}, partitions (x1, . . . , xn) ∈ Prt(x) and
(y1, . . . , ym) ∈ Prt(y), and arbitrary finite collections b1 . . . , bl ∈ B.

C See [23, Proposition 2.6]. B

7.3. Theorem. Let E, F , and G be vector lattices with G Dedekind complete,
b1, . . . , bN ∈ BL∼(E,F ;G), and b := (b1, . . . , bN). Assume that ϕ ∈ H∨( � N ),

ψ ∈ H∧( � N ), ϕ̂(b1(x0, y0), . . . , bN(x0, y0)) and ψ̂(b1(x0, y0), . . . , bN(x0, y0)) are well
defined in G for all 0 ≤ x0 ≤ x and 0 ≤ y0 ≤ y, ϕ(b;x, y) is order bonded above, and
ψ(b;x, y) is order bounded below for all x ∈ E+ and y ∈ F+. Then ϕ̂(b1, . . . , bN) and

ψ̂(b1, . . . , bN ) are well defined in BL∼(E,F ;G) and for every x ∈ E+ and y ∈ F+
the representations

ϕ̂(b1, . . . , bN )(x, y) = supϕ(b;x, y),

ψ̂(b1, . . . , bN)(x, y) = inf ψ(b;x, y)

hold with supremum over upward directed set and infimum over downward directed
set. If E and F have the strong Freudenthal property (or principal projection
property) then Prt(x) and Prt(y) may be replaced by DPrt(x) and DPrt(y),
respectively.

C Denote bλ := λ1b1 + · · ·+ λNbN for λ := (λ1, . . . , λN) ∈ � N and observe that if
the set {bλ : λ ∈ ∂ϕ} is order bounded in BLr(E,F ;G), then by 4.4 ϕ̂(b1, . . . , bN)
exists in BLr(E,F ;G) and ϕ̂(b1, . . . , bN) = sup{bλ : λ ∈ ∂ϕ}. Take arbitrary λr :=
(λr
1, . . . , λ

r
N) ∈ ∂ϕ (r := 1, . . . , l), k : {1, . . . , n} × {1, . . . ,m} → {1, . . . , l}, x :=

(x1, . . . , xn) ∈ Prt(x), and y := (y1, . . . , ym) ∈ Prt(y). Making use of Lemma 7.2 and
Theorem 4.4 we deduce:

n,m∑

i,j=1

bλk(i,j)(xi, yj) =

n,m∑

i,j=1

N∑

s=1

λk(i,j)
s bs(xi, yj) ≤

n,m∑

i,j=1

ϕ̂(b1(xi, yj), . . . , bN(xi, yj)) ≤ a,

where a is an upper bound of ϕ(b;x, y). Passing to supremum over all (λ1. . . . , λl),
k, x, and y and taking Theorem 4.4 into account we get that ϕ̂(b1, . . . , bN ) is well
defined and ϕ̂(b1, . . . , bN)(x, y) ≤ ϕ(b;x, y). Surely, in above reasoning we could take
(x1, . . . , xn) ∈ DPrt(x) provided that E has the principal projection property.
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Conversely, let f(x, y) stands for the right-hand side of the first equality. Observe
that if (λ1, . . . , λn) ∈ ∂ϕ and u ∈ E+, v ∈ F+, then by 4.4 we have

N∑

k=1

λkbk(u, v) =
( N∑

k=1

λkbk

)
(u, v) ≤ ϕ̂(b1, . . . , bN)(u, v)

and again ϕ̂(b1(u, v), . . . , bN(u, v)) ≤ ϕ̂(b1, . . . , bN )(u, v) by Theorem 4.4. Now, given
(x1, . . . , xn) in Prt(x) or DPrt(x) and (y1, . . . , yn) in Prt(y) or DPrt(y), we can
estimate

n,m∑

i,j=1

ϕ̂(b1(xi, yj), . . . , bN(xi, yj)) ≤

n,m∑

i,j=1

ϕ̂(b1, . . . , bN)(xi, yj) = ϕ̂(b1, . . . , bN)(x, y)

and thus f(x, y) ≤ ϕ̂(b1, . . . , bN)(x, y). Thus the first equality is hold true. By Lemma
7.1 the supremum on the right-hand side of the required formula is taken over upward
directed set.

The second representation is proved in a similar way. B

7.4. Corollary. Let E, F , G, ϕ, ψ, b1, . . . , bN be the same as in 7.1, b :=

ϕ̂(b1, . . . , bN) and b := ψ̂(b1, . . . , bN ). Assume that, in addition, E = F has the strong
Freudenthal property and b1, . . . , bN are orthosymmetric. Then for every x ∈ E the
representations

b(x, x) = sup

{ n∑

i=1

ϕ(b1(xi, |x|), . . . , bN(xi, |x|)) : (x1, . . . , xn) ∈ DPrt(|x|)

}
,

b(x, x) = inf

{ n∑

i=1

ψ(b1(xi, |x|), . . . , bN(xi, |x|)) : (x1, . . . , xn) ∈ DPrt(|x|)

}
,

hold with supremum and infimum over upward and downward directed sets,
respectively.

C It is sufficient to check the first formula. We can assume x ∈ E+. Denote
by g(x) the right-hand side of the desired equality. From 7.3 we have g(x) ≤
ϕ̂(b1, . . . , bN)(x, x). To prove the reverse inequality take two disjoint partitions of
x, say x′ := (x′1, . . . , x

′
l) and x′′ := (x′′1, . . . , x

′′
m), and let (x1, . . . , xn) ∈ DPrt(x) be

their common refinement. Since b1, . . . , bN are orthosymmetric we deduce

l,m∑

r,s=1

ϕ̂(b1(x
′
r, x

′′
s), . . . , bN(x

′
r, x

′′
s))

=
n∑

i=1

ϕ̂(b1(xi, xi), . . . , bN(xi, xi)) =
n∑

i=1

ϕ̂(b1(xi, x), . . . , bN(xi, x)).

Passing to supremum over all x′ and x′′ we get the desired inequality. B

8. Functions of Linear Operators

The above machinery is applicable to the calculus of order bounded operators.
By way of illustration compute and estimate ϕ(T1, . . . , TN ) for order bounded linear
operators T1, . . . , TN . We use the above symbols Prt(x) and DPrt(x) for the sets of
partitions and disjoint partitions of x ∈ E+, respectively.
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8.1. Theorem. Let E and F be vector lattices with F Dedekind complete,
T1, . . . , TN ∈ L

∼(E,F ), and T := (T1, . . . , TN). Let ϕ ∈ H∨( � N ), ψ ∈ H∧( � N ), and
[T1, . . . , TN ] is contained in dom(ϕ) ∩ dom(ψ). If for every x ∈ E+ the sets

ϕ(T;x) =

{ n∑

k=1

ϕ̂(T1xk, . . . , TNxk) : (x1, . . . , xn) ∈ Prt(x)

}
,

ψ(T;x) =

{ n∑

k=1

ψ̂(T1xk, . . . , TNxk) : (x1, . . . , xn) ∈ Prt(x)

}

are order bounded from above and from below respectively, then ϕ̂(T1, . . . , TN ) and

ψ̂(T1, . . . , TN) exist in L∼(E,F ), and the representations

ϕ̂(T1, . . . , TN )x = supϕ(T;x),

ψ̂(T1, . . . , TN)x = inf ψ(T; y)

hold with supremum over upward directed set and infimum over downward directed
set. If E has the principal projection property then Prt(x) may be replaced by
DPrt(x).

C Follows immediately from 7.1. B

8.2. Remark. (1) Assume that E, F , T1, . . . , TN , ϕ, and ψ are the same as in

5.1. Then ϕ(T1, . . . , TN)x ≥ ϕ(T1x, . . . , TNx) and ψ(T1, . . . , TN)x ≤ ψ(T1x, . . . , TNx)
for all x ∈ E+. In particular, if � N

+ ⊂ dom(ϕ) ∩ dom(ψ) and ϕ(T1x, . . . , TNx) ≥
ψ(T1x, . . . , TNx) for all x ∈ E+, then ϕ(T1, . . . , TN ) ≥ ψ(T1, . . . , TN).

(2) If the sets in braces at the right-hand sides of 8.1 are order bounded below

and above respectively, then ϕ̂(T1, . . . , TN ) and ψ̂(T1, . . . , TN ) are well defined.
(3) Assume that ϕ ∈H (C; [ x ]) and ϕ(0, t2, . . . , tN) = 0 for all (t1, . . . , tN) ∈

dom(ϕ). Then evidently ϕ̂(x1, . . . , xN) ∈ {x1}
⊥⊥ provided that [ x ] ⊂ dom(ϕ). This

simple observation together with 5.1 enables one to attack the nonlinear majorization
problem for wider variety of majorants ϕ(T1, . . . , TN ), cp. [5].

8.3. Let E and F be vector lattices with E relatively uniformly complete and
F Dedekind complete. Then for T1, . . . , TN ∈ L∼+(E,F ), x1, . . . , xN ∈ E+, and
α1, . . . , αN ∈ � + with α1 + · · ·+ αN = 1 we have

(T α1
1 . . . T αN

N )(xα1
1 . . . xαN

N ) ≤ (T1x1)
α1 . . . (TNxN)

αN .

The reverse inequality holds provided that α1 + · · ·+ αN = 1, (−1)k(1− α1 − · · · −
αk)α1 · . . . · αk ≥ 0 (k := 1, . . . , N − 1), and xi À 0, f(xi)À 0 for all i with αi < 0.

C Apply 6.7 with K = � N
+ , C = 1, ϕ0(t) = ϕ1(t) = ϕ2(t) = tα1

1 . . . tαN
N . B

8.4. Theorem. Let E and F be vector lattices with F Dedekind complete and
T1, . . . , TN ∈ L

∼(E,F ). Suppose that ϕ ∈ G∨( � N ) and ψ ∈ G∧( � N ) are increasing
and [T1, . . . , TN ] ⊂ dom(ϕ) ∩ dom(ψ). Then for every x ∈ E+ the representations
hold

ϕ(T1, . . . , TN)x = sup

{ N∑

k=1

Tkxk : ϕ◦(x1, . . . , xN) ≤ x

}
,

ψ(T1, . . . , TN)x = inf

{ N∑

k=1

Tkxk : ψ◦(x1, . . . , xN ) ≥ x

}
,
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with supremum over upward directed set and infimum over downward directed set.

C Suppose that ϕ(T1, . . . , TN) exists and x ∈ E+. If x1, . . . , xN ∈ E+ and
ϕ◦(x1, . . . , xN) ≤ x, then making use of the Bipolar Theorem, positivity of
ϕ(T1, . . . , TN ), and 6.8 we deduce

N∑

k=1

Tkxk ≤ ϕ(T1, . . . , TN )(ϕ
◦(x1, . . . , xN)) ≤ ϕ(T1, . . . , TN)x.

To prove the reverse inequality take (x1, . . . , xn) ∈ Prt(x), λk = (λk
1, . . . , λ

k
N) ∈

∂ϕ = {ϕ◦ ≤ 1} (k := 1, . . . , n), and put ui :=
∑n

k=1 λ
k
i xk. If α := (α1, . . . , αN ) ∈

∂ϕ◦ = {ϕ ≤ 1}, then 〈α, λk〉 ≤ ϕ(α)ϕ◦(λk) ≤ 1 and thus

N∑

i=1

αiui =
N∑

i=1

αi

n∑

k=1

λk
i xk =

n∑

k=1

〈α, λk〉xk ≤ x.

It follows from 4.4 that ϕ◦(u1, . . . , uN) ≤ x.
Denote S(λ) := λ1T1 + · · · + λNTN with λ := (λ1, . . . , λN). Let f(x) is the right-

hand side of the first equality. Then

n∑

k=1

S(λk)(xk) =
N∑

i=1

Tiui ≤ f(x).

It remains to observe that ϕ(T1, . . . , TN) = sup{S(λ) : λ ∈ ∂ϕ} by 4.4. B

8.5. Proposition. Let E, F , and G be vector lattices with F Dedekind complete,
R : E → G an order interval preserving operator, T : G → F an order continuous
lattice homomorphism, and ϕ ∈H (C,K). Assume that S1, . . . , SN ∈ L

∼(E,F ) and
[S1, . . . , SN ] ⊂ K. Then [S1 ◦R, . . . , SN ◦R] ⊂ K and

ϕ̂(S1, . . . , SN) ◦R = ϕ̂(S1 ◦R, . . . , SN ◦R).

If, in addition, G is Dedekind complete, then [T ◦ S1, . . . , T ◦ SN ] ⊂ K and

T ◦ ϕ̂(S1, . . . , SN) = ϕ̂(T ◦ S1, . . . , T ◦ SN).

C Under the indicated hypotheses the operators S 7→ S ◦ R from L∼(G,F ) to
L∼(E,F ) and S 7→ T ◦ S from L∼(E,G) to L∼(E,F ) are lattice homomorphisms,
see [1, Theorem 7.4 and 7.5]. Therefore, it is sufficient to apply Proposition 2.6. B

8.6. Proposition. Let E and F be vector lattices with F Dedekind complete.
Assume that S1, . . . , SN ∈ L∼(E,F ) and [S1, . . . , SN ] ⊂ K. If S∗ denotes the
restriction of the order dual S ′ to F∼n , the order continuous dual of F , then
[S∗1 , . . . , S

∗
N ] ⊂ K and

ϕ̂(S1, . . . , SN)
∗ = ϕ̂(S∗1 , . . . , S

∗
N).

C By Krengel–Synnatschke Theorem [1, Theorem 5.11] the map S 7→ S∗ is a
lattice homomorphism from L∼(E,F ) into L∼(F∼n , E

∼), see [1, Theorem 7.6]. Thus,
we need only to apply Proposition 2.6. B

8.7. Let E denotes an ideal spaces on (Ω,Σ, µ). Consider another measure space
(Ω′,Σ′, µ′) and let F be an ideal spaces on (Ω′,Σ′, µ′). A linear operator S : E → F
is called a kernel operator with kernel k ∈ L 0(µ′⊗µ) if it admits the representation

(Sũ)(s) =

∫

Ω

k(s, t)u(t) dµ(t) (ũ ∈ E).
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More precisely, there exists a µ′⊗ µ-measurable function k : Ω′ × Ω → ¯� such
that for every ũ ∈ E the value ṽ = Sũ is the equivalence class of the function
v(s) =

∫
Ω
k(s, t)u(t) dµ(t) (s ∈ Ω′). The integral is understood to be the usual

Lebesgue integral.

8.8. Proposition. Let E and F be ideal spaces over σ-finite measure
spaces (Ω,Σ, µ) and (Ω′,Σ′, µ′), respectively. Suppose that S1, . . . , SN are order
bounded kernel operators from E to F with respective kernels k1, . . . , kN and
[S1, . . . , SN ] ⊂ K. Then (k1(s, t), . . . , kN(s, t)) ∈ K for µ′⊗ µ-almost all (s, t) ∈
Ω′ × Ω and ϕ̂(S1, . . . , SN) is also a kernel operator from E to F with kernel
ϕ ◦ (k1(·, ·), . . . , kN (·, ·)); in symbols,

(
ϕ̂(S1, . . . , SN)u

)
(s) =

∫

Ω

ϕ(k1(s, t), . . . , kN (s, t))u(t) dµ(t) (u ∈ E).

C The set I ∼(E,F ) of order bounded kernel operators from E into F is a band
in L∼n (E,F ). The map σ sending every operator from I ∼(E,F ) to the equivalence
class of its kernel is a lattice isomorphism of I ∼(E,F ) onto some order ideal in

L0(µ⊗ µ′). Thus, [k̃1, . . . , k̃N ] ⊂ K and

σϕ̂(S1, . . . , SN) = ϕ̂(k̃1, . . . , k̃N )

by Proposition 2.6. According to Proposition 3.5 there exists a measurable set Ω0 ⊂
Ω′ × Ω such that µ′⊗ µ(Ω′ × Ω \ Ω0) = 0, [k1(s, t), . . . , kN (s, t)] ⊂ K for all (s, t) ∈

Ω0, and ϕ̂(k̃1, . . . , k̃N ) is the equivalence class of the measurable function (s, t) 7→
ϕ(k1(s, t), . . . , uN (s, t))

(
(s, t) ∈ Ω0

)
. B

9. Continuous and measurable bundles of Banach lattices

Now, we consider an instance of homogeneous functional calculus on vector
lattices of continuous and measurable sections of bundles of Banach lattices is also
considered. All necessary information on continuous and measurable Banach bundles
can be found in [14, 15] and [19].

9.1. Let Q be a topological space. A bundle of Banach lattices over Q is a
mapping X defined on Q and associating a Banach lattice Xq := X (q) with every
point q ∈ Q. The value Xq of a bundle X is called its stalk over q. A mapping s
defined on a nonempty set dom(s) ⊂ Q is called a section over dom(s) if s(q) ∈Xq

for each q ∈ dom(s). A section s is called almost global, or global, whenever its
domain dom(s) is respectively a comeager subset of Q or the whole of Q.

Let S(Q,X ) stands for the set of all global sections of X endowed with
the structure of a vector lattice by letting u ≤ v ⇔ (∀q ∈ Q)u(q) ≤ v(q) and
(αu+βv)(q) = αu(q)+βv(q) (q ∈ Q), where α, β ∈ � and u, v ∈ S(Q,X ). For each
section s ∈ S(Q,X ) we consider its point-wise norm |||s||| : q 7→ ‖s(q)‖q (q ∈ Q).

A set C ⊂ S(Q,X ) of global sections of a bundle of Banach lattices X over Q
is called a continuity structure in X if the following conditions are met:

(1) C is a vector sublattice of S(Q,X );
(2) for each s ∈ C , the function |||s||| is continuous;
(3) C is stalkwise dense in X , i.e. for each q ∈ Q, the set

{
s(q) : s ∈ C

}
is

dense in the stalk Xq.
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A continuous bundle of Banach lattices over Q is a pair (X ,C ), where X is a
bundle of Banach lattices over Q and C is a fixed continuity structure in X . In the
sequel we shall write simply X instead of (X ,C ).

A section u ∈ S(Q,X ) is called continuous at q0 ∈ Q if the function |||u − c||| :
q 7→ ‖u(q) − s(q)‖q (q ∈ Q) is continuous at q0 for every section s ∈ C . If u is
continuous at each q0 ∈ dom(u), then u is said to be continuous section (see [14])
and [19] for more details).

9.2. Suppose that X is a continuous bundle of Banach lattices over an extremally
disconnected compact space Q. Let u be a continuous section of X defined on a
dense subset D ⊂ Q. Just as in 3.2 denote by D̄ the totality of all points in Q at
which u has limit and put ū(q) := limp→q u(p) for all q ∈ D̄. Then the set D̄ is
comeager in Q and the section ū is continuous. The section ū is called the maximal

extension of u and denoted by ext(u). A continuous section u defined on a dense
subset of Q is said to be extended, if ext(u) = u. Denote by C∞(Q,X ) the space of
all extended almost global sections of the bundle X .

The set C∞(Q,X ) is endowed by the structure of a lattice normed vector lattice
over C∞(Q) in the following way. If λ, µ ∈ � and u, v ∈ C∞(Q,X ), then the sum
λu+ µv is defined to be ext(λu|D + µv|D), and u ≤ v means hat u(t) ≤ v(t) for all
q ∈ D, where D = dom(u) ∩ dom(v). The maximal extension ext(|||u|||) ∈ C∞(Q) of
the continuous function |||u||| is taken as the norm

uof a section u ∈ C∞(Q,X ).
The notation

u for the function ext(u) is also used if the continuous section u is
defined on an arbitrary dense subset of Q. The space C∞(Q,X ) is a module over
C∞(Q), where eu := ext(e|dom(u) · u|dom(e) for e ∈ C∞(Q) and u ∈ C∞(Q,X ). If E is
an order ideal in C∞(Q) then we assign

E(X ) :=
{
u ∈ C∞(Q,X ) :

u∈ E
}
.

It can be easily checked that E(X ) is a uniformly complete vector lattice.

9.3. Theorem. Let X be a u1, . . . , uN ∈ C∞(Q,X ) and [u1, . . . , uN ] ⊂ K. Then
there exists a comeager subset Q0 ⊂ Q such that Q0 ⊂ dom(u1) ∩ · · · ∩ dom(uN),
[u1(q), . . . , uN(q)] ⊂ K for every q ∈ Q0, and ϕ̂(u1, . . . , uN ) ∈ C∞(Q,X ) is the
maximal extension of the continuous section q 7→ ϕ̂(u1(q), . . . , uN(q)) (q ∈ Q0), i.e.

ϕ̂(u1, . . . , uN )(q) = ϕ̂(u1(q), . . . , uN(q)) (q ∈ Q0).

C The proof is a dully modification of the reasoning in 3.3. B

9.4. A continuous Banach bundle X over an extremal compact space Q is called
ample (or complete if every bounded almost global continuous section of it can be
extended to a global continuous section. Put

C#(Q,X ) :=
{
u ∈ C∞(Q,X ) :

u∈ C(Q)
}
.

Let C(Q,X ) denote the set of all global continuous sections of X . Then a bundle X

is ample if and only if C#(Q,X ) = C(Q,X ).

9.5. Let G be a universally complete vector lattice with a fixed order unit and
the corresponding structure of a semiprime f -algebra. A duality pair in G is a pair
(E,D) of order dense ideals E and D in G such that the ideal E∗ := {e∗ ∈ G : (∀e ∈
E) ee∗ ∈ D} is also order dense in G.

Take a lattice-normed space X with
X⊥⊥ = E. The operator-dual space X∗ is

defined as follows. An operator x∗ : X → D belongs to X∗ if and only if there exists
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an element 0 ≤ c ∈ E∗ such that

〈x, x∗〉 := x∗(x) ≤ c
x (x ∈ X).

The least element 0 ≤ c ∈ E∗ satisfying the indicated relation exists. This element
is denoted by

x∗. The mapping x∗ 7→
x∗ is an E∗-valued norm in X∗ and

the following inequality holds:

〈x, x∗〉 ≤
xx∗ (x ∈ X).

Two lattice normed lattices X and Y over E are said to isometrically isomorphic if
there exists a lattice isomorphism i of X into Y such that

i(x)
=

xfor all x ∈ X.

9.6. Theorem. Let X be an ample continuous bundle of Banach lattices,
S1, . . . , SN ∈ E(X )∗, and [S1, . . . , SN ] ⊂ K. Then there exist v1, . . . , vN ∈ E

∗(X ′)
and a comeager subset Q0 ⊂ Q such that

(1) Q0 ⊂ dom(u1) ∩ · · · ∩ dom(uN);
(2) [u1(q), . . . , uN (q)] ⊂ K for every q ∈ Q0;
(3) for every ϕ ∈ H (C,K) the map q 7→ ϕ̂(v1(q), . . . , vN(q)) (q ∈ Q0) is a

continuous section of X ′ over Q0, and for all u ∈ E(X ) the representation holds:
(
ϕ̂(S1, . . . , SN)(u)

)
(q) = 〈u(q), ϕ̂(v1(q), . . . , vN(q))〉 (q ∈ Q0);

(4)
̂ϕ(S1, . . . , SN)

(q) = ‖ϕ̂(v1(q), . . . , vN(q))‖X ′(q) (q ∈ Q0).
In particular, the lattice normed lattice E(X )∗ is isometrically isomorphic to

E∗(X ′), where the isometric isomorphism is performed by associating with each
section v ∈ E∗(X ′) the operator u 7→ 〈u, v〉 from E(X ) to D, see [15]. (Here 〈u, v〉
denotes the coset of the function 〈u0(·), v0(·)〉 with u0 ∈ u and v0 ∈ v.)

9.7. Now consider a nonzero measure space (Ω,Σ, µ) with the direct sum property.
Let X be a bundle of Banach lattices over Ω. Denote by S∼(Ω,X ) the set of all
sections of X defined almost everywhere on Ω. A set of sections C ⊂ S∼(Ω,X ) is
called a measurability structure on C , if it satisfies the following conditions:

(a) λ1c1 + λ2c2 ∈ C and |c| ∈ C for all λ1, λ2 ∈ � and c, c1, c2 ∈ C ;
(b) the point-wise norm |||c||| : Ω→ � of every element c ∈ C is measurable;
(c) the set C is stalkwise dense in X .

If C is a measurability structure in X then we call the pair (X ,C ) a measurable

bundle of Banach lattices over Ω. We shall usually write simply X instead of (X ,C ).
Let (X ,C ) be a measurable bundle of Banach lattices over Ω. We say that

s ∈ S∼(Ω,X ) is a step-section, if s =
∑n

k=1[Ak]ck for some n ∈
�
, A1, . . . , An ∈ Σ

and c1, . . . , cn ∈ C . A section u ∈ S∼(Ω,X ) is called measurable if, for every
L ∈ Σ with ν(L) < +∞, there is a sequence (sn)n∈ � of step-sections such that
sn(ω) → u(ω) for almost all ω ∈ L. The set of all measurable sections of X is
denoted by L 0(Ω,Σ, µ,X ) or L 0(µ,X ) for brevity.

9.8. Suppose that X is a measurable Banach bundle over Ω. Consider the
equivalence relation ∼ in the set L 0(µ,X ): u ∼ v means that u(ω) = v(ω)
for almost all ω ∈ Ω. The coset containing u ∈ L 0(µ,X ) is denoted by ũ.
The quotient set L0(µ,X ) := L0(Ω,Σ, µ,X ) := L 0(µ,X )/∼ is a vector lattice:
(sũ+tṽ) = (su+tv)∼ and ũ ≤ ṽ ⇔ u(ω) ≤ v(ω) for almost all ω ∈ Ω, where s, t ∈ �
and u, v ∈ L 0(µ,X ). For every u ∈ L 0(µ,X )/∼ we may define its (vector) normu:=̃u:= |||u|||∼ ∈ L0(µ). It is clear that the vector lattice L0(µ,X ) is uniformly
complete.
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9.9. Let X be a measurable bundle of Banach lattices over Ω. Consider a lifting
ρ : L∞(Ω)→ L∞(Ω). We call a mapping ρX : L∞(µ,X )→ L∞(µ,X ) a lifting of
L∞(µ,X ) associated with ρ if, for all u, v ∈ L∞(Ω,X ) and e ∈ L∞(Ω) the following
relations hold:

(1) ρX (u) ∈ u and dom(ρX (u)) = Ω;
(2)
ρX (u)

= ρ(
u);

(3) ρX (u+ v) = ρX (u) + ρX (v);
(4) |ρX (u)| = ρX (|u|);
(5) ρX (eu) = ρ(e)ρX (u);
(6) the set {ρX (u) : u ∈ L∞(Ω,X )} is stalkwise dense in X .

We say that X is a liftable measurable bundle of Banach lattices provided that
there exists a lifting of L∞(Ω) and a lifting of L∞(Ω,X ) associated with it. The
following result is due to A. E. Gutman, see [15].

9.10. Theorem. Let X be a liftable measurable bundle of Banach lattices
over Ω. Then there exists (a unique) liftable measurable bundle of Banach lattices
X ′ such that

(1) at each point ω ∈ Ω, the stalk X ′(ω) is a Banach sublattice of X (ω)′;
(2) if u ∈ L 0(µ,X ) and u′ ∈ L 0(µ,X ′), then 〈u, u′〉 ∈ L 0(µ);
(3) for all u ∈ L∞(µ,X ) and u′ ∈ L∞(µ,X ′), we have ρ(〈u, u′〉) =

〈ρX (u), ρX ′(u′)〉, where ρX and ρX ′ are respective liftings of X and X ′ associated
with ρ;

(4) if a bounded mapping u′ : ω 7→ u′(ω) is such that, for every u ∈ L∞(µ,X )
the function 〈u, u′〉 is measurable and ρ(〈u, u′〉) = 〈ρX (u), u′〉, then u′ ∈ L∞(µ,X ′).

9.11. Theorem. Let S1, . . . , SN ∈ E(X )∗, e :=
S1
+ · · · +

SN

, and
[S1, . . . , SN ] ⊂ K. Then there exist measurable sections v1, . . . , vN ∈ L 0(X ′) such
that

(1) ṽ1, . . . , ṽN ∈ E
∗(X ′);

(2) [v1(ω), . . . , vN(ω)] ⊂ K for every ω ∈ Ω;
(3) for every ϕ ∈ H (C,K) the map ω 7→ ϕ̂(v1(ω), . . . , vN(ω)) (ω ∈ Ω) is a

measurable section of X ′ and for all u ∈ E(X ) and ω ∈ Ω the representation holds:

ρe
(
ϕ̂(S1, . . . , SN)(u)

)
(ω) = 〈u(ω), ϕ̂(v1(ω), . . . , vN(ω))〉 (ω ∈ Ω);

(4) for every ϕ ∈ H (C,K) the map ω 7→ ‖ϕ̂(v1(ω), . . . , vN(ω))‖ (ω ∈ Ω) is
measurable and the corresponding coset coincide with

̂ϕ(S1, . . . , SN)
.

10. Functions of Dominated Operators

In this section we prove two representation theorems for ϕ̂(T1, . . . , TN) with
dominate operators T1, . . . , TN .

10.1. At first, we introduce a vector lattice Ew(X
′) of weakly measurable vector-

valued functions. Let (Ω,Σ, µ) be a measure space with the direct sum property,
E an order dense ideal in L0(Ω,Σ, µ), and X a Banach lattice. An X ′-valued
function u defined almost everywhere on Ω is called σ(X ′, X)-measurable or simply
X-measurable if, for each x ∈ X, the function t 7→ 〈x, u(t)〉 (t ∈ Ω) is measurable.
Denote the coset of the last function by 〈x, u〉, so that 〈u, z〉 ∈ L0(µ). Let L 0

w(Ω, X
′)

be the set of X-measurable vector-valued functions u : Ω → X ′. We say that X-
measurable vector-functions u and v are X-equivalent and write u ' v if, for each
x ∈ X, the measurable functions 〈x, u(·)〉 and 〈x, v(·)〉 are equal almost everywhere.
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Consider the quotient set L0w(µ,X
′) := L0w(Ω,Σ, µ,X

′) := L 0
w(Ω, X

′)/ ' and define
vector space structure in it by setting αũ + βṽ := (αu + βv)∼. For a coset ũ ∈
L0w(µ,X

′) with u ∈ L 0
w(Ω, X

′) put 〈x, ũ〉 := 〈x, u〉. The set R(ũ) :=
{
〈ũ, z〉 : z ∈ Z,

‖z‖ ≤ 1
}

is order-bounded in L0(µ) and we can assign

̃u:= sup
{
〈x, u〉 : x ∈ X, ‖x‖ ≤ 1

}
,

where the supremum is taken in L0(Ω,Σ, µ). Define now the set

Ew(X
′) :=

{
u ∈ L0w(µ,X

′) :
u∈ E

}
.

It is easy to verify that for every order ideal E ⊂ L0(µ) the space Ew(X
′) endowed

with the operations and E-valued norm
·induced from L0w(Ω,Σ, µ,X

′) is a Banach–
Kantorovich space over L0(Ω,Σ, µ) [19].

10.2. Let ρ is a lifting of L∞(µ) and ρ(ẽ) = e for some 0 ≤ e ∈ L 0(µ). Given
g ∈ L 0(µ), defined the function g/e by (g/e)(ω) = 0 if e(ω) = 0 and (g/e)(ω) =
g(ω)/e(ω) if e(ω) > 0. Put

L
∞
e (µ) := {g ∈ L

0(µ) : g/e ∈ L
∞(µ)},

L∞e (µ) := L
∞
e (µ)/ ∼,

ρe(g̃) := eρ(g̃/e)
(
g ∈ L

∞
e (µ)

)

Then L∞e (µ) is an ideal space on (Ω,Σ, µ) and ρe is a lattice isomorphism of L∞e (µ)
into L∞

e (µ). Moreover, ρe(g̃) ∈ g̃ for any g ∈ L∞e (µ) and ρe(ẽ) = e.
Let (gα) is an order bounded subset of L∞

e and let ρe(g̃α) = gα for every α. Then
the point-wise supremum g(t) = supα{gα(t)} is measurable and g̃ = sup g̃α in L0(µ).

10.3. We now recall two types of dominated operators, see [19]. LetX be a Banach
space and E an ideal space. An operator S : X → E is dominated if the image of
the unit ball in X is order bounded in E. The element

Sdefined as

S= sup{|Sx| : x ∈ X, ‖x‖ ≤ 1}

is called the abstract norm of S. The linear space of all dominated operatorsM(X,E)
is denoted also by LA(X,F ) and is called the space of operators with abstract
norm. If X is a Banach lattice then M(X,E) is a Dedekind complete vector lattice.
Actually, the exact dominant is presented by the mapping t 7→ t

S(t ∈ � ).
An operator S : E → Y is dominated if there exists a positive functional e∗ on E

such that
‖Te‖ ≤ 〈|e|, e∗〉 (e ∈ E).

The exact dominant is calculated as follows:

Te = sup

{ n∑

k=1

‖Tek‖ : e1, . . . , en ∈ E+,
n∑

k=1

ek = e, n ∈
� }

(e ∈ E+).

10.4. Theorem. Let X be a Banach lattice, E an ideal space on (Ω,Σ, µ), and
S ∈M(X,E) with ẽ :=

Sfor some e ∈ L 0(µ). Then there exists an X-measurable
function v : Ω→ X ′ such that

(1) ṽ ∈ Ew(X
′);

(2) ρe(Sx)(ω) = 〈x, v(ω)〉 for all x ∈ X and ω ∈ Ω;
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(3) the function ω 7→ ‖v(ω)‖ (ω ∈ Ω) is measurable and the corresponding
coset coincides with

S;
(4) the function ω 7→ |v(ω)| (ω ∈ Ω) is X-measurable and for every x ∈ X we

have ρe(|S|x)(ω) = 〈x, |v(ω)|〉 for almost all ω ∈ Ω.

C Define v : Ω→ X ′ by 〈x, u(ω)〉 = ρe(Sx)(ω) (x ∈ X, ω ∈ Ω). It is well known
that v obeys (1)–(3) for any Banach space X, see [3, Theorem 2.1]. Let X be a
Banach lattice and 0 ≤ x ∈ X. Then |S|x = sup0≤|a|≤x S(a). According to 10.2
the point-wise supremum gx of the family (〈a, v(ω)〉)0≤|a|≤x is measurable and the
coset of gx is equal to |S|x. It remains to observe that gx(ω) = 〈x, |v(ω)|〉 for every
ω ∈ Ω. B

10.5. Remark. If we deal with equivalence classes of measurable functions

instead of measurable functions, then we have the following simple representation
result: There exists a norm reserving lattice isomorphism ι : S → v := ι(S) of
M(X,E) onto Ew(X

′) such that Sx = 〈x, v〉 (x ∈ X), see [3, Theorem 2.2].
As an easy corollary to this fact we get the representation ϕ̂(S1, . . . , SN)x =
〈x, ϕ̂(v1, . . . ,vN)〉 (x ∈ X) for any finite collection S1, . . . , SN ∈ M(X,E), where
vi := ι(Si). However, we have to work with individual functions if we want to describe
explicitly ϕ̂(v1, . . . ,vN) or at least |v| ∈ Ew(X). The choice of a representing
function v ∈ v is not suitable for this purpose. Indeed, by 10.4 (2) there is an
X-measurable function v0 : Ω → X such that ρe(〈x,v〉)(ω) = 〈x, v0(ω)〉. At
the same time for each x ∈ X we have 〈x, v0(ω)〉 = 〈x, |v(ω)|〉 for almost every
ω ∈ Ω according to 10.4 (4). This problem disappear if X ′ have the Radon-Nikodým
property, since in this event Ew(X

′) = E(X ′) and, if v is a representing function
for S, then |v| : ω 7→ |v(ω)| is a representing function for |S|, i.e v0 and |v| are
equal almost everywhere. But for general X it is not true and another tool should
be involved. Such tool was invented by A. E. Gutman in [15]: the spaces E(X) and
E(X ′) are representable as the spaces of measurable sections of liftable measurable
Banach bundles. An easy modification of Gutman’s approach covers the case of
vector lattices.

10.6. Theorem. Let X be a Banach lattice and (Ω,Σ, µ) a measure space with
the direct sum property. There exists a liftable measurable bundle of Banach lattices
X := (X (ω))ω∈Ω over Ω, unique to within a ρ-isometry, and such that if X ′ :=
(X ′(ω))ω∈Ω is the dual measurable Banach bundle, than

(1) X is a Banach sublattice of each stalk X (ω) and X ′(ω) is a Banach
sublattice of X (ω)′ for all ω ∈ Ω;

(2) the respective liftings ρX and ρX ′ of X and X ′ are module preserving,
are associated with ρ, and ρX (c̃) = c for all constant functions c : Ω→ X;

(3) for every section u ∈ L 0(Ω,X ) the function u coinciding with u on
u−1(X) and vanishing on Ω \ u−1(X) is contained in L 0(µ,X);

(4) for every section v ∈ L 0(µ,X ′) the function vX : ω 7→ v(ω)|X from Ω to
X ′ is contained in L 0

w(µ,X
′);

(5) the mapping sending the coset of u ∈ L 0(µ,X ) to the coset of u ∈
L 0(µ,X) is a lattice isomorphism and an isometry of L0(µ,X ) onto L0(µ,X);

(6) the mapping sending the coset of v ∈ L 0(µ,X ′) to the coset of vX ∈
L 0

w(µ,X
′) is a lattice isomorphism and an isometry of L0(µ,X ′) onto L0w(µ,X

′).

C For an arbitrary Banach space X this fact was established by A. E. Gut-
man [15]. Consider the trivial Banach bundle X0 : ω 7→ X and let the totality
of constant functions c : Ω → X be taken as the measurability structure C of X0.
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Then X0 can be densely embedded into a liftable measurable Banach bundle X .
I. G. Ganiev [13, Theorem 2.1] observed that if X is a Banach lattice then then
(since the measurability structure is a vector lattice) X is a measurable bundle
of Banach lattice with the lifting ρX associated with ρ; moreover, ρX is module
preserving. According to Theorem 10.4 Ew(X

′) is a vector lattice. At the same time
X ′ is the representing measurable Banach bundle for the space Ew(X

′) and thus is
a measurable bundle of Banach lattices and ρX ′ is module preserving. It remains to
observe that the linear isometries indicated in (5) and (6) are order isomorphisms if
X is a Banach lattice. B

We say that (X ,X ′) is a representing pair of measurable Banach bundles for
(E(X), Ew(X

′)).

Now we are ready to prove our representation result for ϕ̂(S1, . . . , SN) with
S1, . . . , SN ∈ M(X,E). In the sequel we put ϕ̂(u1(ω), . . . , uN (ω)) = 0 whenever
u1, . . . , uN ∈ L 0(µ,X ′) but ϕ̂(u1(ω), . . . , uN (ω)) cannot be correctly defined in X ′,
i.e. [u1, . . . , uN ] is not contained in K.

10.7. Theorem. Let X be a Banach lattice, E an ideal space on (Ω,Σ, µ), and
(X ,X ′) a representing pair of measurable Banach bundles for (E(X), Ew(X

′)).
Consider ϕ ∈ H ( � N , K) and S1, . . . , SN ∈ M(X,E) with [S1, . . . , SN ] ⊂ K and
put e :=

S1
+ · · ·+SN

, S := ϕ̂(S1, . . . , SN). Then there exist measurable sections
u1, . . . , uN ∈ L 0(Ω,X ′) such that

(1) ũ1, . . . , ũN ∈ E(X ′);

(2) [u1(ω), . . . , uN (ω)] ⊂ K for all ω ∈ Ω;

(3) the function ω 7→ ϕ̂(u1(ω), . . . , uN (ω)) (ω ∈ Ω) is a measurable section of
X ′ and for all x ∈ X and ω ∈ Ω we have

ρe(Sx)(ω) = 〈x, ϕ̂(u1(ω), . . . , uN (ω))〉;

(3) the function ω 7→ ‖ϕ̂(u1(ω), . . . , uN(ω))‖X ′(ω) (ω ∈ Ω) is measurable and
the corresponding coset coincides with

S.

C Theorems 10.4 and 10.5 imply that there exists a lattice isomorphism ι of
M(X,E) onto E(X ′) such that for every S ∈ M(X,E) we have Sx = 〈x̃, ι(S)〉,
where x̃ stands for the coset of the constant function ω 7→ x (ω ∈ Ω). Put
Le

w(µ,X) := {u ∈ L0w(µ,X) :
u∈ Le

w(µ)} and consider the corresponding spa-
ce of X-measurable vector functions L e

w(µ,X
′) :=

⋃
{u : u ∈ Le

w(µ,X
′)}. If

u ∈ Le
w(µ,X

′), then |ρe(〈x,u〉)| ≤ ‖x‖e for all x ∈ X and the vector function
ω 7→ ρe(〈·,u〉) ∈ X ′ lie in L e

w(µ,X
′). Thus, we can define an operator ρe from

Le
w(µ,X

′) to L e
w(µ,X

′) by putting 〈x, ρe(u)〉 = ρe(〈x,u〉) for all x ∈ X and
u ∈ Le

w(X
′). In view of 10.4 ρe is a linear operator; moreover, ρe(u) ∈ u and

ρe(gu) = ρ(g)ρe(u) for all u ∈ Le
w(µ,X) and g ∈ L∞(µ).

It follows from 10.4 (4) that ρe(|u|)(ω) = |ρe(u)(ω)| for all u ∈ Le
w(µ,X)

and ω ∈ Ω. Therefore, � := ρe
(
Le

w(µ,X)
)

is a vector sublattice of the vector
lattice

∏
ω∈ΩX ′(ω) with the point-wise ordering and ρe is a lattice isomorphism

of Le
w(µ,X) onto � . In particular, � is a uniformly complete vector lattice. Put

h := ρe ◦ ι and ui := h(Si) (i := 1, . . . , N). Clearly, u1, . . . , uN ∈ L e
w(X

′) and thus
ũ1, . . . , ũN ∈ L

e
w(X

′) ⊂ Ew(X
′). By Proposition 2.6 [u1, . . . , uN ] ⊂ K and

ρe
(
ϕ̂(S1, . . . , SN)x

)
= ρe

(
〈x, ι(ϕ̂(S1, . . . , SN ))〉

)

= 〈x, h(ϕ̂(S1, . . . , SN))〉 = 〈x, ϕ̂(u1, . . . , uN)〉.
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For any ω ∈ Ω define a lattice homomorphism ω̂ : � → X ′(ω) by ω̂(v) := v(ω).
Again by Proposition 2.6 we have [u1(ω), . . . , uN (ω)] ⊂ K and ω̂(ϕ̂(u1, . . . , uN )) =
ϕ̂(v1(ω), . . . , vN(ω)) from which we have

ρe
(
ϕ̂(S1, . . . , SN)x

)
(ω) = 〈x, ϕ̂(v1(ω), . . . , vN(ω))〉.

Now it is clear that the function ϕ̂(u1(·), . . . , uN(·))〉 is X-measurable, the function
‖ϕ̂(u1(·), . . . , uN (·))‖ is measurable, and

Sis the coset of ‖ϕ̂(u1(·), . . . , uN (·))‖. B

10.8. Theorem. Let X be a Banach lattice, E an ideal space on (Ω,Σ, µ) with
point separating dual E∼n , F an order dense ideal in E∼n , and (X ,X ′) a representing
pair of measurable Banach bundles for (E(X), Ew(X

′)). Let the dominated operators
S1, . . . , SN ∈ MF (E,X

′) with [S1, . . . , SN ] ⊂ K are given, and S := ϕ̂(S1, . . . , SN).
Then there exist measurable sections u1, . . . , uN ∈ L 0(Ω,X ′) such that

(1) ũ1, . . . , ũN ∈ F (X
′);

(2) [u1(ω), . . . , uN (ω)] ⊂ K for all ω ∈ Ω;
(3) for every ϕ ∈ H ( � N , K), the function ω 7→ ϕ̂(u1(ω), . . . , uN(ω)) (ω ∈ Ω)

is a measurable section of X ′ and the representation holds

〈x, S(e)〉 =

∫

Ω

e(ω)〈x, ϕ̂(u1(ω), . . . , uN(ω))〉 dµ(ω) (e ∈ E, x ∈ X);

(4) the function ω 7→ ‖ϕ̂(u1(ω), . . . , uN(ω))‖ (ω ∈ Ω) is measurable and

S(e) =
∫

Ω

e(ω)‖ϕ̂(u1(ω), . . . , uN (ω))‖ dµ(ω) (e ∈ E).

C For any Banach space X the mapping which sends a dominated operator
S ∈ MF (E,X

′) to the restriction h(S) := S ′|X of its adjoint S ′ : X ′′ → F to X is
an isomorphism of M(E,X ′) onto M(X,F ); moreover,

S=
h(S)

 for all S, see
[4, Theorem 3.3]. It remains to observe that if X is a Banach lattice, then h is also
a lattice isomorphism and apply Theorem 10.5. B

Acknowledgements

The author would like to thank A. E. Gutman and S. S. Kutateladze for reding the
text and making valuable remarks, R. Drnovšek and A. Peperko for attracting his
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