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HOMOGENEOUS FUNCTIONAL CALCULUS
ON VECTOR LATTICES

A. G. KUSRAEV

1. Introduction

For any finite sequence (z1,...,zyx) (N € N) in a relatively uniformly complete
vector lattice the expression of the form ¢(zq,...,2x) can be correctly defined
provided that ¢ is a positively homogeneous continuous function on RY. The study
of such expressions, called homogeneous functional calculus, provides a useful tool in
a variety of areas, see |9, 18, 19, 26, 27, 28, 36]. At the same time it is of importance in
certain problems to deal with ¢(z1,...,zy) even if ¢ is defined on a conic subset of
RN [5, 28, 29]. The aim of this paper is to extend homogeneous functional calculus
and consider an interplay between Minkowski duality and functional calculus on
vector lattices as well as to develop the quasilinearization method for proving
convexity inequalities in vector lattices.

In Section 2 the extended homogeneous functional calculus is defined. It is
shown that the expression ¢(z1,...,zy) can naturally be defined in any relatively
uniformly complete vector lattice if a positively homogeneous function ¢ is defined
on some conic set dom(p) C RY and is continuous on some subcone of dom(yp).
Section 3 contains some examples of computing @(uy,...,ux) whenever uy, ..., uy
are continuous or measurable vector-valued functions or ¢ is a Kobb-Duglas type
function. In Section 4 Minkowski duality is transplanted to vector lattice by
means of extended functional calculus. In Section 5, using this machinery, the
quasilinearization method for proving inequalities is developed in vector lattice
setting and the general forms of some classical inequalities (Jensen, Holder,
Minkowski) are also given. In Section 6 a Maligranda type inequality for positive
bilinear operators on uniformly complete vector latices is deduced. In Sections 7
and 8 formulas for computing ¢(T}, . .., Ty) for linear and bilinear regular operators
Ti,..., Ty are derived and some operator inequalities are proved. Section 9 deals
with homogeneous functions on vector lattice of continuous and measurable sections.
Section 10 contains further examples.

There are different ways to define homogeneous functional calculus on vector
lattices [6, 18, 26, 30]. We follow the approach of G.Buskes, B. de Pagter, and
A. van Rooij [6] going back to G.Ya.Lozanovskil [30]. Theorem 1.1 below see in
[6, 19, 26, 36].

For the theory of vector lattices and positive operators we refer to the books [1]
and [19]. All vector lattices in this paper are real and Archimedean.

Denote by 7 (RY) the vector lattice of all continuous functions ¢ : RY — R
which are positively homogeneous (= p(Mt) = A\p(t) for A > 0 and t € RY). Let dty,
stands for the kth coordinate function on R, i.e. dty : (t1,...,tx) > tp.

1.1.Theorem. Let E be a relatively uniformly complete vector lattice. For any
r:=(x1,...,25) € EN there exists a unique lattice homomorphism

T:p—1(e)=p(x1,...,zN) (@E%([RN))

of #(RY) into E with ¥(dty,) = xy, (k:==1,...,N).
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If the vector lattice E is universally o-complete (= Dedekind o-complete and
laterally o-complete) and has an order unit, then Borel functional calculus is also
available on FE. Let Z(RY) denotes the vector lattice of all Borel measurable
functions ¢ : RY — R. The following result can be found in [19, Theorem 8.2.14].

1.2. Theorem. Let E be a universally o-complete vector lattice with a fixed
weak order unit 1. For any t:= (xy,...,2y) € EV there exists a unique sequentially
order continuous lattice homomorphism

T:o—1(e)=p(x,...,zN) ((,0 € %([RN))

of B(RY) into E such that T(1gy) = 1 and ¥(dty) = z; (k:=1,...,N).

Let #0:(RY) denote the vector sublattice of Z(RY) consisting of all positively
homogeneous Borel functions ¢ : RY — R.

1.3. Theorem. Let E be a universally o-complete vector lattice and  :=
(x1,...,2y5) € EN. Then there exists a unique sequentially order continuous lattice
homomorphism

Trp = T(p) =@, an) (¢ € Ha(RY))

of Hor(RN) into E such that T(dt) =y (k:=1,...,N).

< Put 1:= |z1| 4+ -+ + |zn| and denote by Ey the band in E generated by 1.
Then FEj is a universally o-complete vector lattice with order unit 1 and one can take
T : o (RY) — Ej as in Theorem 1.2. Since 3, (RY) is an order o-closed vector
sublattice of Z(RY), the restriction of T onto % (RY) is also an order o-continuous
lattice homomorphism. If h : 3, (RY) — E is another order o-continuous lattice
homomorphism with h(dt,) = t(dty) (k:= 1,...,N), then h and z(-) coincide on
A (RN) by Theorem 1.1. Afterwards, we infer that h and () coincide on the whole
Hor(RY) due to order o-continuity. >

2. Functional Calculus

In this section we define extended homogeneous functional calculus on relatively
uniformly complete vector lattices. Everywhere below r:= (xy,...,zy) € EV.

2.1. Consider a finite collection z1,...,xy € E and a vector sublattice L C E.

Denote by (x1, ..., zxn) and Hom(L) respectively the vector sublattice of E generated
by {x1,...,zn} and the set of all R-valued lattice homomorphisms on L. Put

] :=[z1,...,on]:= {(w(z1),...,w(zy)) €ERY : w € Hom({z1,...,2x))}.

Let e:= |z1] + ... + |zn| and Q:= {w € Hom({(z1,...,2n)) : w(e) = 1}. Then e
is a strong order unit in (xi,...,zx) and € separates the points of (z1,...,zn).
Moreover, 2 may be endowed with a compact Hausdorff topology so that the
functions 7y : © — R defined by Ty(w) := w(zx) (k:= 1,...,N) are continuous
and x — 7T is a lattice isomorphism of (x1,...,zy) into C(€). Put

Qzy, ..., 2x) = {(w(x)),...,w(zy)) eRY . weQl,

and observe that [xi,...,zxn]| = cone(Q(zy,...,2x)), where cone(A) is the conic
hull of A defined as (J{AA : 0 < XA € R}. Evidently, Q(z1,...,zx) is a compact
subset of RV, since it is the image of the compact set { under the continuous map
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w i (T1(w),...,Tx(w)). Therefore, [zq,...,xN] is a compactly generated conic set
in RY. (The conic set [zy,...,2x] is closed if 0 ¢ Q(zy,...,72x).) A set C C RY
is called conic if A\C C C for all A > 0 while a convex conic set is referred
to as a cone. The reasoning similar to [6, Lemma 3.3] shows that [zy,...,2x]
is uniquely determined by any point separating subset g of Hom((z1,...,xy)).
Indeed, if ) := {w(e)'w : 0 # w € Qq}, then Qf is a dense subset of Q and
[z1,...,2n] = cone (cl(Qy(z1,...,2n))), where Q)(z1,...,zy) is the set of all
(w(z1), ..., w(zy)) € R with w € €.

2.2. For a conic set C' in RY denote by C' C EV the set of all 1:= (z1,...,2y) €
EY with [¢] € C. Consider a conic set K C C. Let 52 (C; K) denotes the vector
lattice of all positively homogeneous functions ¢ : C' — R with continuous restriction
to K. Fix (z1,...,2y) € C and take ¢ € J2(C;[r]). We say that @(zy,...,zy)
exists or is well defined in E and write y = T(p) = @(z1, ..., xy) if there is an element
y € E such that w(y) = p(w(xy),...,w(xy)) for every w € Hom({(z1,...,2n,¥)).
This definition is correct, since for any given (z1,...,zy) € C and ¢ € #(C;[r])
there exists at most one y € F such that y = @(z1,...,2y). It is immediate from
the definition that @(Ajz, ..., Ayx) is well defined for any (Ay,...,Ay) € C and
P\, ..., AnT) = P(A1, ..., Ay )x whenever 0 < x € E. The following proposition
can be proved as |6, Lemma 3.3].

Assume that L is a vector sublattice of E containing {x1,...,zy,y} and
o € H(C;lry,...,xn]). If w(y) = p(w(z1),...,w(rN)) (W € Q) for some point
separating set )y of R-valued lattice homomorphisms on L, then y = ¢(z1,...,2yN).

2.3. Theorem. Let E be a relatively uniformly complete vector lattice and
r€ BN, r = (x1,...,2n). Assume that C C RY is a conic set and [r] C C. Then
(@)= P(x1,...,xN) exists for every p € H#(C;[r]) and the mapping

T T(9) = B(r,...,an) (€ H(C;[1]))

is a unique lattice homomorphism from ¢ (C;[t]) into E with cﬁj (X1,...,2n) =5
for j:=1,...,N.

< Let #2([r]) denotes the vector lattice of all positively homogeneous continuous
functions defined on [¢]. Then 4#°([¢]) is isomorphic to C(Q), where Q:= [¢]NS and
S:={s € R : ||s||:= max{]|si],...,|sn|} = 1}. Much the same reasoning as in [6,
Proposition 3.6, Theorem 3.7| shows the existence of a unique lattice homomorphism
h from J([r]) into E such that cﬁj(xl,...,a:]v) =z (j:=1,...,N). Denote by
p the restriction operator ¢ — ¢l (¢ € H#(C;[x])). Then po h is the required
lattice homomorphism. >

Observe that if ¢, € H(C;[r]) and p(t) < ¢(t) for all ¢ € [r], then
o(x1, ... on) < Y(x,...,zy). Evidently, [p()| < |lell - ||t]] for all ¢ € [x] with
Il]ll := sup{p(t) : t € Q} and hence

D@z, .zl < lell (lzaf V-V 2w ])

In particular, the kernel ker(T) of T consists of all ¢ € J#(C;[r]) vanishing on [r].

2.4. Let K,M,N € N and consider two conic sets C C RY and D C RM. Let
T1,...,xy € E, v:= (21,...,2n), [t] C C, ¢1,...,0om € H(C;[r]), and denote
v:=(p1,...,om) and v:= (y1,...,yn) with yp = @r(x1,...,2n5) (k:=1,..., M).
Suppose that [y] C D, ¢(C) C D, and ¢([t]) C [n]. If ¥ = (¥1,...,%k)
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with ©y,..., 0 € JF(D;[y]), then ¢ o ¢,... g o p € FH(C;[r]). Moreover,

BO):= (Br(®).- . Pue)) € B, d0)i= (Dr(0).... D)) € B, and § o p(t) =
(Y1 00(x), ...,k o p(x)) € EX are well defined and

(o)) = B(@)).

2.5. Theorem. Let C and K are conic sets in RY with K closed and K C C
and let p € H(C; K). Then for every € > 0 there exists a number R. > 0 such that

P(x+1) — 2@)] < ellell + Rell[vll

for any finite collectionst = (z1,...,xy) € EYN andy = (y1,...,yn) € EV, provided
thatr,n € K, r+vn € K and [[(wr, ... ,un)|| stands for |uy| V -+ V Juy|.

< The proof is a duly modification of arguments from |9, Theorem 7|. Denote
K= {(s,t) € K x K : s+t € K} and define A as the set of all (s,t) € K*
with max{||s||, ||t||]} = 1 and 7(s,t) := |p(s +t) — ©(s)| > €||s||, where |s] :=
max{|si,...,|sny|}. Then A is a compact subset of K x K and (s,t) — (7(s,t) —
el|s]|)/|It]] is & continuous function on A, since ||t|| # O for (s,t) € A. Therefore,

Rg::sup{wz (s,t) EA} < 00

1]
Hence 7(s,t) < el|s|| + R:|[t|| =: o(s,t) for all (s,t) € K*. Evidently, 7 €
H(C*,K*), 0 € (RN x RY), and 7 < o on K*. It remains to observe that
(r,n) € K* and apply 2.3 and the desired inequality follows. >

2.6. Proposition. Let E and F be uniformly complete vector lattices, Fy a
uniformly closed sublattice of E, and h : Ey — F a lattice homomorphism. Let
C be a conic set in RN, z1,...,ay € Ey, and ¢ € H#(C;lxy,...,2x]). Then
[h(21),...,h(zN)] C [21,...,2Nn] and

hB(ay, ... ax)) = Bh(z1), ... hizy)).

In particular, if h is the inclusion map E — F and x+,...,xy € E, then the element
o(z1,...,zN) relative to F' is contained in E and its meaning relative to E is the
same.

g Puty;:=h(z;) (i:=1,...,N). Ifw € Hom({y1,...,yn)), then ©:= woh belongs
to Hom({x1,...,zn)) and (w(y1),...,w(yy)) = (@(x1),...,0(xN)) € [T1,...,2N]-
Therefore, [y1,...,yn] is contained in [z1,...,2y]. Now, if y = &(y1,...,yn), T =

o(xy,...,xn), and w € Hom((y, y1,...,yn)), then we Hom((x x1,...,xy)) and by
definition
w(y) = p(@(z1),...,0(xN)) = 0(@(z1,...,25) = w(h(z)),
so that y = h(z). >
Denote 55 (RN, [x]):= {¢ € Ho:(RY) 1 sup{|e(s)] : s € SN[r]} < +oo}.
2.7. Theorem. Let E be a Dedekind o-complete vector lattice. For T :=

(x1,...,2,) in EV there exists a unique sequentially order continuous lattice
homomorphism

Trome) =81, an) (v € AR, [x])
of 742 (RN [¢]) into E such that ¥(dty) = x), (k:=1,...,N).
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< Let Ey be the order ideal in E generated by x1,...,zy. According to 1.3 there
exists a unique sequentially order continuous lattice homomorphism T of 3, (RY)
into (Fy)“, a universal o-completion of Fy, with ¥(dt;,) = xy (k:=1,..., N). Clearly,
the image of 52 (RY,[¢]) under T is contained in Ej. >

3. Examples

Now, we consider extended functional calculus on some special vector lattices
and for some special functions . Everywhere in the section ¢ € 57 (C; K).

3.1. Proposition. Let () be a Hausdorff topological space, X a Banach
lattice, and Cy(Q,X) the Banach lattice of norm bounded continuous functions
from @ to X. Assume that uq,...,uy € Cy(Q,X) and [u,...,uy] C K. Then
[u1(q), ..., un(q)] C K for all ¢ € Q and

Plug, ., un)(q) = ur(q), -, un(q)) (g€ Q).

< Indeed, for g € @ the map ¢ : Cy(Q, X) — X defined by ¢ : u — u(q) is a lattice
homomorphism. Therefore, given uy, ..., uy € Cp(Q, X), by Proposition 2.6 we have
[(u1),...,q(un)] C [u1,...,un] and @(P(uq,...,uy)) = &(q(u1),...,q(uy)) from
which the required is immediate. >

3.2. Suppose now that () is compact and extremally disconnected. Let u: D — X
be a continuous function defined on a dense subset D C . Denote by D the totality
of all points in @ at which u has limit and put @(q) := lim,_,u(p) for all ¢ € D.
Then the set D is comeager in @ and the function @ : D — X is continuous. Recall
that a set is called comeager if its complement is meager. Thus, the function u is the
“widest” continuous extension of u i.e., the domain of every continuous extension of
u is contained in D and, moreover, % is an extension of every continuous extension
of u. The function @ is called the maximal extension of u and denoted by ext(u).
A continuous function v : D — X defined on a dense subset D C () is said to be
extended, if ext(u) = u. Note that all extended functions are defined on comeager
subsets of ().

Let Coo(Q, X) stands for the set of all extended X-valued functions. The totality
of all bounded extended functions is denoted by C? (@, X). Observe that Cs,(Q, X)
can be represented also as the set of cosets of continuous functions u that act from
comeager subsets dom(u) C @ into X. Two vector-valued functions v and v are
equivalent if u(t) = v(t) whenever ¢ € dom(u) N dom(v).

The set Coo(Q,X) is endowed, in a natural way, with the structure of a
lattice ordered module over the f-algebra C'.(Q). Moreover, Cy,(Q, X) is uniformly
complete and for any uq,...,uy € Cu(Q,X) the element P(uq,...,uy) is well
defined in C(Q, X) provided that [uq,...,uy] C K.

3.3. Proposition. Let ) be a extremally disconnected conpact space and X
a Banach lattice. Let uq,...,uy € Co(Q,X) and [uy,...,uy] C K. Then there
exists a comeager subset Qo C () such that Qo C dom(u;) for all i := 1,..., N,
[u1(q), ..., un(q)] C K for every q € Qo, and p(uy,...,uy) is the maximal extension
of the continuous function q — p(u1(q),...,un(q)) (¢ € Qo), i. e.

Plur, - un)(@) = @(ua(q), -, un(q)) (g € Qo).

< Put Q' := dom(uy) N--- N dom(uy) and observe that Q' is comeager. There
exists a unique function e € Cw(Q) such that €'(q) := |Jui(q)|| + -+ + [Jun(q)|
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(g € Q). Let E be the order ideal in C(Q) generated by e and define the sublattice
E(X) C Cx(Q,X) by

E(X)i= {u € Co(@,X): (30<C €R)(¥q € dom(w)) u(q)]| < Ce(q)}.

In the Boolean algebra of clopen subsets of () there exists a partition of unity
(Q(f))£€5 with xqe € C(Q) for all § € E. Put Q¢ := Q'NQ¢ and Qo := U,z Qf and
observe that Q) is comeager in (). Let 7¢ stands for the band projection in Coo (@), X)
defined by ¢ @ u — xgeu. Then 7 (E(X)) C Cy(Q,X) and (mew;)(q) = wi(q)
(g € Qg i=1,...,N). Finally, given ¢ € Q%, in view of Propositions 2.6 and 3.1 we
have [u1(q), . .., un(q)] = [(meu1)(q), ..., (meun)(q)] € K and

(me@(ua, .. un))(@)p((meur)(q), - - -, (meun)(q)) =
= @(meuy, ..., meun)(q) = P(u1(q), - - - un(q))
and the proof is complete. >

3.4. Let (2,%, u) be a measure space with the direct sum property and X be a
Banach lattice. Let Z°%(u, X):= £°(Q, %, u, X) be the set of all Bochner measurable
functions defined almost everywhere on Q with values in X and L%, X) :=
Z(u, X)/ ~ the space of all equivalence classes (of almost everywhere equal)
functions from Z°(u, X). Then L°(u, X) is a Banach lattice and hence @(uy, . . ., uy)
is well defined in LO(p, X) for ¢ € S (C;K) and uy,...,uxy € L%p,X) with
[u1,...,uy] C K. Denote by @ the equivalence class of u € £°(u, X).

Let £ (u, X) stand for the part of Z°(u, X) comprising all essentially bounded
functions and L™ (u, X):= Z%(p, X)/ ~. Put L°(u):= 2L, R) and L®(p) =
L>(u,R). Denote by L>(u) the part of Z*°(u) consisting of all function defined
everywhere on €. Then L*(u) is a vector lattice with point-wise operations and
order. Recall that a lattice homomorphism p : L*°(u) — 1L°°(u) is said to be a lifting
of L>°(u) if p(f) € f for every f € L*°(u) and p(1) is the identically one function
on €. (Here 1 is the coset of the identically one function on §2). Clearly, a lifting is
a right-inverse of the quotient homomorphism ¢ : f — f (f € Z°°(u). The space
L*>*(p) admits a lifting if and only if (€2, X, i) possesses the direct sum property. If
f e £>(u), then the function p(f) is also denoted by p(f).

3.5. Proposition. Let uy,...,uy € Z°(Q, 3, 1, F), and [uy, ..., uy| C K. Then
there exists a measurable set Q0 C ) such that 1(Q\Qg) = 0, [ug(w), ..., un(w)] C K
for all w € Qq, and (@, ..., Uy) is the equivalence class of the measurable function
wi— P(ur(w), ..., un(w)) (w € Q).

< The problem can be reduced to Proposition 3.2 by means of Gutman’s approach
to vector-valued measurable functions. Let p be a lifting of L*>°(Q,%, u) and 7 :
Q2 — (@ be the corresponding canonical embedding of €2 into the Stone space @)
of the Boolean algebra B(,Y, 1), see [16]. The preimage 77'(V) of any meager
set V' C @ is measurable and p-negligible. Moreover 7 is Borel measurable and
v o 7 is Bochner measurable for every v € C(Q, X). Denote by 7* the mapping
which sends each function v € Co (@, X)) to the equivalence class of the measurable
function v o 7. The mapping 7* is a linear and order isomorphism of C.(Q, X)
onto L°(Q, 3, u, X). If o is the inverse of 7*, then [o(uy),...,0(iy)] C K and
op(ty,...,an) = @(o(t),...,o(ty)) by Proposition 2.6. According to Proposition
3.3 there exists a comeager subset Qg C @ such that [o(d1)(q),...,o(un)(q)] C K
for all ¢ € Qy and

plo(@), ..., o(an))(q) = d(o(@)(q),- ... olan)(a)) (g€ Qo).

Q
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Clearly, the functions u;:= o(4;) o 7 and u; are equivalent and @(y, ..., uy) is the
equivalence class of o(P(ty, ..., ayx)) o 7. Let ' stands for the set of all w € Q with
u(w) = ui(w) for all i = 1,...,N. Then Qy := 771(Qg) N Q' is measurable and

w(2\ ) = 0. Substituting ¢ = 7(w) we get [u}(w),. .., uy(w)] C K for all w € Qq
and

U@(ala R ,”ELN)(T(CU)) = @(u'l(w), s ,U?V(W)) (w S QO)7
which is equivalent to the required statement. >

3.6. A conic set C' C RY is said to be multiplicative if st:= (sit1,...,syty) € C
for all s:= (s1,...,8ny) € C and t:= (t1,...,ty) € C. A function ¢ : C — R is
called multiplicative if o(st) = p(s)p(t) for all s,t € C.

Take a subset I C {1,...,N} and define RY as the cone in RY consisting of
0 and (s1,...,sy) € RY with s; > 0 (¢ € I). We will write 2; > 0 (i € I) if
[z1,...,2n] C RY. The general form of a positively homogeneous multiplicative
function ¢ : RY — R other that ¢ = 0 is given by

gp(tl,...,tN):O (tltN:()),
O(t1,...,ty) =exp(gi(Inty)) - ... -exp(gy(Inty)) (t1-... -ty #0),
where g¢i,...,gy are some additive functions in R with Zf\il g = Ig. If @ is

continuous at any interior point of RY or bounded on any ball contained in RY,
then we get a Kobb—Duglas type function and if, in addition, ¢ is nonnegative, then
O(ty, ... tn) =17 -t with o, ..., ay € R and ZiNleéi =1.

By definition x; > 0 (i € I) implies that @p(z1,...,xy) is well defined for every
o € H(RY,[x1,...,2n]). Thus, the expression z{* - ... - 23" is well defined in F
provided that xj, > 0 for all k& with aj, < 0. At the same time ¢ € J#(RY) whenever
I = @ and in this case 7" - ... -z is well defined in E for arbitrary xz; > 0 and
g 20 (k': 1,,N)

3.7. Proposition. Let F, ' and G be vector lattices with E and F' uniformly
complete and b : E x F' — G a lattice bimorphism. Let ¢ := (z1,...,zy) € EV,
p:= (y1,...,yn) € FV, and [f] U [y] C K for some multiplicative closed conic set
K C RN. If ¢ € #(C,K) is multiplicative on K, then ¢(b(x1,41), ..., b(xy,yn))
exists in G and

~

5(5(331,91), o b(ay,yn)) = b((a, - ,$N),$(y1, . YN))-

-~ ~

< Put uw = ¢(xy,...,zn) and v = @(y1,...,yn). Let Ey and Fy be the vector
sublattices in F and F' generated by {u, z1,...,xy} and {v,y1,...,yn}, respectively.
Let Gg be the order ideal in G generated by b(e, f) where e:= |u|+ |z1| + - - + |z n]
and f:= |v| + |y1] + -+ + |yn]|. Observe that Hom(Gy) separates the points of Gj.
By [23, Theorem 3.2| every R-valued lattice bimorphism on Ey x Fj is of the form
o7 : (x,y) — o(x)r(y) with 0 € Hom(Ey) and 7 € Hom(F}). Denote by by the
restriction of b to Ey x Fy. Given an R-valued lattice homomorphism w on Gq, we
have the representation w o b = o ® 7 for some lattice homomorphisms o : Fy — R
and 7 : Fy — R. Since K is multiplicative, we have

(Wb(@1,51), - wblzn,yn))) = (o(@)TW1), - -, o(2n)T(yYn))
= (O-(xl)’ ce 7U(xN>> ) (T(y1)7 s 7T(yN)) €K,
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and thus [b(z1,v1),...,b(zn,yn] C K. Now, making use of 2.6 and multiplicativity
of ¢ we deduce

wob(u,v) =0o(d(x1,...,2n))T(D(Y1, ..., yn))
= ¢(o(x1), ..., 0(@n))o(T(¥1), - T(yn))
= ¢(o(z1)T(y1), .-, o(xNn)T(yn))
= ¢(wob(z1,y1), ..., woblzyn,yn))

as required by definition 2.2. >

3.8. In particular, we can take G := F @ F, the Fremlin tensor product of F
and I, or E°, the square of E, and put b:= ® or b:= ® in 3.7. Thus, under the
hypotheses of 3.7 we have

$($1®y1,---,$N®yN):5(1317--~755N)®$(y17-~-;yN>;
¢(x1®y17'-‘7xN®yN):¢(ZI;17"'7$N)®¢(y17"'7yN>~

Taking 3.6 into consideration we get the following: If 0 < ay,...,ay € R, a3 +---+
ay = 1, then |z1 @ y1|* - ... |[ay Q@ yn|* exists in E® F for all xy,..., 2y € E
N
* = (H |
i=1

and y1,...,yy € F and
N
[Tz ®u "‘i);
i=1

if, in addition, £ = F', then we also have
N N N
[Tiesout = (Il ) © (TTni)

i=1 i=1 i=1

0"') ® (li i

3.10. Proposition. Let E be a uniformly complete vector lattice, ¢ :=
(z1,...,2n) € EN, p:= (m,...,7y) € Orth(E)Y, and [t] U [p] C K for some
multiplicative closed conic set K C C C RN. If ¢ € (C,[x]) N H#(C,[p]) is
multiplicative on K, then gg(mxl, ..., TNZy)) exists in E and

~ ~

o(mzy, ..., inven) = ¢(m, ... ,WN)(QZ(Il, . ,J:N)).

< The bilinear operator b from E x Orth(F) to E defined by b(z, 7):= 7(z) is a
lattice bimorphism and all we need is to apply Proposition 3.7. >

4. Minkowski Duality

The Minkowsk: duality is the mapping that assigns to a sublinear function its
support set or, in other words, its subdifferential (at zero). For any Hausdorff locally
convex spaces X the Minkowski duality is a bijection between the collections of all
lower semicontinuous sublinear functions on X and all closed convex subsets of the
conjugate space X', see |25, 34]. The extended functional calculus (Theorems 1.3,
2.3, and 2.7) allows to transplant the Minkowski duality to vector lattice setting.

4.1. A function ¢ : RY — R U {+oo} is called sublinear if it is positively
homogeneous, i.e. ©(0) = 0 and @(At) = Ap(t) for all A > 0 and ¢t € RY, and
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subadditive, i.e. p(s+t) < @(s)+p(t) for all s,t € RY. A function ¢ : RY — RU{—o0}
is called superlinear if — is sublinear. We say that ¢ is lower semicontinuous (1) is
upper semicontinuous) if the epigraph epi(¢):= {(t,a) € RY x R: ¢(t) < o} (the
hypograph hypo(y):= {(t,) € R¥ xR : ¢(t) > a}) is a closed subset of RY X R. The
effective domain of a sublinear o (superlinear v) is dom(p):= {t € RV : ¢(t) < +o00}
(dom(v):= {t € RN: ¢(t) > —oo}). The subdifferential d of a sublinear function

¢ and the superdifferential 01 of a superlinear function v are defined by

Op:={t e RN : (s,t) < (s) (s € R},
Y= {teRY: (s5,t) >¢(s) (s € RV)},

where s = (s1...,8x5), t = (t1...,tx), {5,t) := S, sptgy. Denote by 2, (RY, K)
and 7, (RN, K) respectively the sets of all lower semicontinuous sublinear functions
o : RV - RU {+0o0} and upper semicontinuous superlinear functions v : RY —
RU {—oc} which are finite and continuous on a fixed cone K C RY. Put JZ,(RY):=
H, (RN, {0}) and 2, (RY):= 2, (RY,{0}). We shall consider 5, (R") and 7, (R")
as subcones of the vector lattice of Borel measurable functions 3., (RY) with the
convention that all infinite values are replaced by zero value.

4.2. Theorem. Let ¢ € S, (RY) and o) € #,(R"). Then there exist countable
subsets A C d¢ and B C 0y such that the representations hold:

o(s) =sup{(s,t): te A} (seR"),
Y(s) = inf{(s,t): t € B} (s€R"Y).

< The claim is true for A = dp and B = 01 in any locally convex space X. The
sets Jp and 0v may be replaced by their countable subsets A and B provided that
X is a separable Banach space, say X = RY (see [17, Proposition A.1]). >

4.3. REMARK. Let H be a linear (or semilinear) subset of E. The support set

Oyx of x € FE with respect to H is the set of all H-minorants of x: dyx:= {h € H :
h < x}. The H-convezx hull of x € F is defined by cog x:=sup{h € H : h € Ogz}.
An element z is called H-convex (abstract convex with respect to H) if coy x = x.
Now the problem is to examine abstract convex elements, that is elements which can
be represented as upper envelopes of subsets of a given set of elementary elements.
For this abstract convezity see S.S. Kutateladze and A. M. Rubinov [25], as well as
A.M. Rubinov [35].

In this section we deal with the description of H-convex elements in E in the
event that H is the linear hull of a finite collection {z1,...,zy} C E. The following
two theorems say that under some conditions an element in E is H-convex if and
only if it is of the form () for some lower semicontinuous sublinear functions ¢.

For A C RY denote by (A,x) the set of all linear combinations 25:1 Apxyp in B
with (A1,...,An) € A, so that

N
sup (A, r):=sup { Z)\kxk (A, AN) € A}.
k=1

4.4. Theorem. Let E be a o-complete vector lattice with an order unit,
T1,...,oy € E, and p:= (x1,...,2y). Assume that ¢ € J,(RN), v € A (RY),
and [r] C dom(y) Ndom(v)). Then r(p) exists in E if and only if (Qp,r) Is order
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bounded above, r() exists in E if and only if (0, ) is order bounded below, and
the representations hold:

() =sup (dp,x), T(¥)=inf ().

Moreover, p(xy,...,xyN) (12(301, . ,xN)) is an order limit of an Increasing
(decreasing) sequence which is comprised of the finite suprema (infima) of linear
combinations of the form Zfil Xiz; with (A, ... A\y) € D¢ (()\1, ... AN) € 5w).

< Assume that ¢ € S (RY) and [xy,...,25] C dom(p). Let Ey denotes the
band in £ generated by 1 := |z + --- + |zy| and by 1 and Ej” stands for the
universally o-completion Ej. By Theorem 1.3 T(p) always exists in Ey and the
required representation holds true in E§?, since ¢ is Borel. In more details, let ¢
vanishes on R\ dom () and coincides with ¢ on dom(i). Then ¢ is a Borel function
on RY and according to 4.2 we may choose an increasing sequence (¢,,) of Borel
functions such that ¢,, coincides with the finite supremum of linear combinations of
the form SN | A\it; on dom(ip) and (p,,) converges point-wise to . By Theorem 1.3
the sequence (r(p,)) is increasing and order convergent to T(py) = T(p). Now it is
clear that { dp, 1) is order bounded above in E if and only if x(¢) € Ey. >

4.5. Theorem. Let E be a relatively uniformly complete vector lattice,
Ty,...,oy € B, and r:= (2q,...,2n). If ¢ € H(RY;[¢]) and ¢ € H(RY;[x]),
then

T(p) =sup (9p,1)

T(v) = inf (9,1 ).

Moreover, p(x1,...,2TN) (12(1:1, o ,xN)) is a relatively uniform limit of an increa-
sing (decreasing) sequence which is comprised of the finite suprema (infima) of linear
combinations of the form Zfil Aix; with A= (Aq,... Ay) € Qp (A € ).

<1 Consider ¢ € S, (RY; [x1,...,zy]) and denote y = P(x1,...,zyx). By 2.3
vni=Mr1+ ...+ Ayvey <y

for an arbitrary A := (Ay,...,Axy) € Jp. Assume that v € E is such that v > v,
for all A € dp. By the Kreins—Kakutani Representation Theorem there is a lattice
isomorphism = — 7 of the principal ideal F, generated by u = |z1|+ ...+ |zn]|+ |v]
onto C'(Q) for some compact Hausdorff space ). Then v, z1,...,xy, vy, and y lie
in F, and for any A € dy the point-wise inequality v(q) > v,(q) (¢ € Q) is true. By
3.1 and 2.6 we conclude that

y(q) = o(21(q), - .., xn(q)) = sup{va(q) : A € Oy} < 0(q).
Thus we have y < v and thereby y = sup{v, : A € dp}.

Put U := {vy : X € ng} and denote by UY the subset of F consisting of the
suprema of the finite subsets of U. Then U C E, and the set UV:={v: v € U"} is
upward directed in C'(Q) and its point-wise supremum equals to . By Dini Theorem
Uv converges to y uniformly and thus UY is norm convergent to y in FE,. The
superlinear case 1 € £, (RY;[z1,...,zy]) is considered in a similar way. >

4.6. In some situation it is important to know wether the function is the upper
or lower envelope of a family of increasing linear functionals. Suppose that RY is
preordered by a cone K C R¥, i.e s > t means that s — ¢t € K. The dual cone
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of positive linear functionals is denoted by K*. A function ¢ : RY — R U {#o0}
is called increasing (with respect to K) if s > t implies ¢(s) > ¢(t). A lower
semicontinuous sublinear (an upper semicontinuous superlinear) ¢ is increasing if
and only if d¢ C K* (0¢ C K*) and thus ¢ is an upper envelope of a family of
increasing linear functionals (is a lower envelope of a family of increasing linear
functionals). If ¢ is increasing only on dom(¢), then this claim is no longer true but
under some mild conditions it is still valid for the restriction of ¢ onto dom(¢), see
[25, 35].

Proposition. Let ¢ : RN — RU {+o0o} and ¢ : RN — RU {—occ} be the same
as in Theorem 4.2. Suppose that, in addition, dom(p) — K = K — dom(y) and
dom(¢) — K = K — dom(v). Then the following assertions hold:

(1) ¢ is increasing on dom(y) if and only if

p(s) =sup{(s,t) : t € (Op) NK"} (s € dom(yp));
(2) 1 is increasing on dom(v) if and only if

Y(s) =inf{(s,t) : t € ()NK*} (s&dom()).

< Indeed, we may assume RY = dom(p) — K and then the function ¢* : RY — R
defined by ¢*(s) = inf{p(t) : t € dom(p),t > s} (s € RY) is increasing and
sublinear and coincides with ¢ on dom(y); moreover dp* = (dp) N K*. Similarly,
assuming RY = dom(y)) — K, we deduce that the function 1, : RN — R defined by
V.(s) = sup{e(t) : t € dom(v)), t < s} (s € RY) is increasing and superlinear and
agrees with 1) on dom(v)); moreover, o1y, = (0¢) N K*. It remains to observe that ¢
and 1 are increasing if and only if p = ¢* and ¥ = ¥,. >

4.7. Corollary. Assume that ¢ is increasing on dom(yp), 1 is increasing on
dom(%), dom(p) — K = K — dom(y), and dom(¢y)) — K = K — dom(v). If, in
addition, the assumptions of either 4.4 or 4.5 are fulfilled, then in 4.4 and 4.5 the
sets Q¢ and g may be replaced by (0 ) N K* and (0¢) N K*.

4.8. A gauge is a sublinear function ¢ : RY — Ry U {+o00}. A co-gauge is a
superlinear function ¢ : RY — R U {—o0}. The lower polar function ¢° of a gauge
v and the upper polar function ¢, of a co-gauge ¢ are defined by

e (t):=inf{A>0: (Vs € RY)(s,t) < Ap(s)} (teRY),
Yo(t):=sup{A>0: (Vs € RY) (s,t) > M)(s)} (t€RY)
(with the conventions sup @ = —o0, inf @ = 400, and 0(400) = 0(—o0) = 0). Thus,
©° is a gauge and 1), is a co-gauge. Observe also that the inequalities hold:
(s,1) < @(s)¢°(t) (s € dom(p), t € dom(¢”)),
(s,t) = (s)o(t) (s € dom(¢), t € dom(th,)).
Denote ¢°°:= (¢°)° and ¢o0:= (¢o)o-
4.9. Bipolar Theorem. Let ¢ be a gauge and ¢ be a co-gauge. Then p°° = ¢

if and only if ¢ is lower semicontinuous and ., = v if and only if i is upper
semicontinuous.

< See [34]. >
4.10. The lower polar function ¢° is a gauge and can be also calculate by

o°(t) = sup 20

up 5 =sup{(s,t) s €RY, p(s) <1} (teRY),
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(with the conventions a/0 = +o0 for & > 0 and /0 = 0 for a < 0) and

s, t
Yo(t) = sieI[}efN f/’(’S; =inf{(s,t): s€RY, ¢(s) >1or¢(s) =0} (teRY)
(with the conventions /0 = +o0 for @ > 0 and a/0 = —oo for a < 0).

Denote by %,(RM,K) and %,(RY,K) respectively the sets of all lower
semicontinuous gauges ¢ : RN — R, U {+0o0} and upper semicontinuous co-gauges
¥ : RN — R, U{—o0c} which are finite and continuous on a fixed cone K C RY. Put
G,(RY):=4,(RY,{0}) and ¥4, (RY):= 4, (RY,{0}). Observe that 4, (RY) C 5, (RY)
and ¢, (RY) C 7 (RY).

4.11. Corollary. Assume that either the assumptions of 4.4 are fulfilled and, in
addition, ¢ € 4,(RN) and v € 4,(RY), or the assumptions of 4.5 are fulfilled and
additionally ¢ € 4,(RY;[¢]) and v € S (RV;[x]). Then in 4.4 and 4.5 the sets
0 and Op may be replaced by {t € RN : ¢©°(t) < 1} and {t € RN : . (t) > 1},
respectively.

< Tt is immediate from the Bipolar Theorem and the above definitions, since
obviously ¢ = {t € RN : ¢©°(t) <1} and, ¢ = {t € RV : ¢°(t) > 1}. >

5. Convexity Inequalities

According to Minkowski duality lower semicontinuous sublinear functions and
upper semicontinuous superlinear functions are respectively upper and lower
envelopes of families of linear functions. This fact can be used for proving inequalities
and such approach is often called the quasilinearization method, see |2, 32|. Below we
show that the same approach works in abstract setting and prove Jensen’s, Holder’s,
and Minkowski’s inequalities in uniformly complete vector lattices.

5.1. Given a cone K C R", denote by & (RY K) (. (R, K)) the set of all
sublinear (superlinear) functions ¢ : RY — R U {+oo} (R U {—o0}) with the
properties: a) ¢ is lower semicontinuous (upper semicontinuous), b) K C dom(¢)
and ¢ is continuous on K, c¢) ¢ is increasing on dom(¢) with respect to RY,
d) RY — dom(¢) = dom(¢) — RY.

Let E and F be vector lattices. An operator f : E — F U {+oc} is said to be
sublinear if f(0) =0, f(Azx) = Af(x), and f(x +y) < f(z) + f(y) for all 0 < A € R
and x,y € E. A superlinear operator g : E — F'U{—0c0}, dom(f) and dom(g), are
defined as in 4.1. We say that f is increasing on dom(f) if z > y implies f(z) > f(y)
for x,y € dom(f). For more details concerning sublinear operators, see [22].

5.2. Theorem (The generalized Jensen inequalities). Let F and F be
relatively uniformly complete vector lattices, f : E — F U {400} an increasing
sublinear operator, and g : E — F U {—o0} an increasing superlinear operator.
Assume that ¢ € (RN K) and ¢ € 7, (RN, K). If x4, ..., x5 € dom(f)Ndom(g)

and [xq,...,xy]| C K, then p(z1,...,xy) € dom(g), ¥(z1,...,2zy) € dom(f) and
f(llj\(xla s wa)) < @(f(xl)v - ‘7f(xN))7
g($<m17"'7xN)) > @(g(x1)7ag(xN)>

<1 According to 4.6 we have the following representation

W(s) =inf {(s,t): t € (OY)NRY} (s € dom(v)),
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since 1 is increasing on dom(t) and (RY)* = RY. Now, using 4.6 and taking into
consideration that f is sublinear and increasing, we deduce
F@(ar...,xn))
<inf{f(Mz1+ -+ Avay): (A, .-, ) (
<inf{\f(z1)+ -+ Anvflzn): (A, n) €
= O(f(21),. ., flan)).

The second inequality is handled in a similar way. >

€ (0y) NRY}
(0y) NRY}

5.3. REMARK. The given simple proof contains some additional possibilities.

(1) The inequalities from 5.2 remain valid if ¢ € S, (RY, K), v € 7, (RY, K),
and f,g : EF — F are positive linear operators. In this case f and g are actually
homogeneous (not only positively homogeneous!) and, for (Ay,...,A\y) in ¢ or in
J¢p, there is no need to involve the additional requirement (A1,...,A\y) € [Rf )

(2) If E and F are Dedekind o-complete then the classes of admissible ¢
and ¢ in 5.2 may be extended: the generalized Jensen inequalities remain valid if
o € H,(RY) and ¢ € H(RY), provided that $(z;...,zy) and ¢(zy...,zy) are
well defined in E. Indeed we need only to refer to 4.4 instead of 4.5.

(3) Equalities hold in 5.2 in the following cases: (a) in addition to hypotheses
of Theorem 5.2, f,g : E — F are lattice homomorphisms; (b) all hypotheses
from 5.3(2) are fulfilled and f,g : E — F are sequentially order continuous
lattice homomorphisms. Indeed, according to Theorems 4.4 and 4.5 we can choose
a decreasing sequence (, which consists of the finite infima of linear functions
of the form t +— (t,\) with A € J¢ such that @,(z1,...,2xy) converges to
P(x1,...,zx) uniformly in case (a) and in order in case (b). It remains to observe
that f(Pn(x1,...,2N8)) = @u(f(x1),..., f(xy)) and pass to the o-limit or u-limit as
n — +00.

5.4. Corollary. Let E be a Dedekind o-complete Banach lattice, (2,%, 1) a
measure space with the direct sum property, and xy,...,zxy € LY (Q, 3, u, E). If
o € (RN K), v e (RN K), and [Ty,...,Tn] C K, then [z1(w),...,zx(w)] C
K for almost all w € §2 and

3. (o) dute) s@( [o@au),.... [ o) du(w)>,
[ 2@ antonane) = o [, .., [ext i)

<1 The Bohner integral defines a positive linear operator = +— [,(Z) :=
Jo x( ) from LY(Q, 2, u, E) to E. Therefore, we can apply Theorem 5.2 with
f= I takmg Remark 5.3 (2) into consideration and using Proposition 3.5. >

5.5. The generalized Holder inequality. Let E and I be relatively uniformly
complete vector lattices and let f : E — F U {400} be an increasing sublinear
mapping with dom(f) = E,. Then for x1,...,xy € E and 0 < «y,...,ay € R,
with oy + -+ +ay = 1 we have

N
f(Hm

)< s
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The reverse inequality holds provided that f : E — F{—oo} is superlinear, oy +

cotay =1, (-1 -a;—-—ag)ay-...cap >0 (ki=1,...,N—1), and z; > 0,
f(xz;) > 0 for all i with a; < 0.
< Let ap + - - -+ ay = 1. The function ¢(tq,...,tx) =15+ t3" is superlinear

on RY if 0 < ay,...,an and sublinear on RY (see 3.6) with [:= {i € {1,...,N}:
a; < 0} whenever «;, x;, and f(z;) obey the latter conditions. >

5.6. The generalized Minkowski inequality. Let E and F be relatively
uniformly complete vector lattices, f : E — F U{+oo} be an increasing sublinear
mapping with dom(f) = E, and zy,...,xy € E. If either and 0 < « < 1 or a« <0
and additionally x; > 0 and f(x;) > 0 for all i:=1,..., N, then

f((iu)/) < (émxma)w.

The reverse inequality holds if f : E — F U {—o0} is superlinear and o > 1.

< The function ¢(t1,...,tx) = (¢ + -+ t?‘VN)l/a is superlinear on RY if 0 <
a < 1, superlinear on int(RY) if @ < 0, and sublinear on RY if o > 1. >

5.7. REMARK. The generalized Holder and Minkowski inequalities as they stand
in 5.5 and 5.6 were obtained in [20] making use of the representations (0 < o < 1):

st = inf{aAY%s + (1 —a)A V079 0 < X e Q},
(s* + ) =inf{A"Vos+ (1 —A) Y% 0< <1, Aeq}).

Equalities hold in 5.5 and 5.6 if f and ¢ are lattice homomorphisms, see 5.3 (3). In
the special case of vector lattices of measurable functions the first inequality from
5.2 as well as 5.5 (0 < ap < 1) and 5.6 (0 < o < 1) were established by M. Haase [17,
Proposition 1.1, Remarks 1.2 (5) and 1.2 (6)]. Some special cases of 5.3 (and other
interesting results) were also obtained by R. Drnovsek and A. Peperko in [10]. Various
classical and recent inequalities are related to Holder’s or Minkowski’s inequality
(see E. F. Beckenbach, R. Bellman [2]; D. S. Mitrinovi¢, J. E. Pecari¢, A. M. Fink [32]).
Some of them can naturally be transferred into the environment of vector lattice. By
way of example we consider one more result that generalizes the inequality obtained
by J. E. Pecari¢ and P.R. Beesack (see [32, Ch. VI, §4, Theorem 4]).

5.8. Proposition. Let F and F be relatively uniformly complete vector lattices,
f: E — FU{+00} be an increasing sublinear mapping, g : E — R U {—o0}
an increasing superlinear function, and dom(f) = dom(g) = E,. Suppose that
z1,...,xny € E and yy,...,yn € E with g(ly;|]) > 0 (i :== 1,...,N). Then for
a,f R, 0<a<1<[, we have

B—a

(S50 o
g((Zﬁl Iyilﬁ)é) - (;({;E;y‘l))) ) '

< Let A stands for the left-hand side of the required inequality. Put v:= a3/(5—
a), 0:= [/(f — a), and 7:= —a/(f — «). Denote u; = f(|z;|)” and a; = g(Jy;|) ™
and observe that u; is well defined in the universal completion F™ of F' with a fixed
order unit. Now, first apply Minkowski inequality to f and 0 < o < 1 and reverse
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Minkowski inequality to g and 5 > 1 (see 5.6), and then use reverse Holder inequality
(see 5.5) in F* for the sum Y | a;u; with powers o and 7 taking into account that

o/v=1/aand 7/y = —-1/p:

N 1

A< (;mxi\)a)a - (ég(!yi!)ﬁ)_

() (£0)) = (Sew) = (2 (220) )

Thus, the required inequality is true in F™* and hence in F', since both sides are well
defined in F. >

@l

6. Inequalities for Bilinear Operators

In this section we deduce a Maligranda type inequality for positive bilinear
operators on uniformly complete vector latices using the above machinery.

6.1. The Fremlin tensor product £ ® F' need not be uniformly complete even
for uniformly complete E and F'. Therefore, the expressions of the form ¢(x; ®
Y1, - .., TN®yy) with continuous positively homogeneous ¢ are generally meaningless
in £ ® F. Denote by EQF the uniform completion of £ ® F, see for example [33,
Theorem 2.13]. Of course, P(x1 @y, ..., rx @ yy) is well defined in E&F provided
that [z1 ® yi,...,2n] C dom(yp).

It is quite natural to consider E®QF as the tensor product in the category of
uniformly complete vector lattices and positive (or regular) operators. One can
easily prove that EQF shares the important universal property of Fremlin’s tensor
products E® F (see [11, Theorem 5.3|): If G is a uniformly complete vector lattice,
then for every positive bilinear operator b : - x F' — G there exists a unique positive
linear operator T : EQF — G such that b = T®. Moreover, b is a lattice bimorphism
if and only if T is a lattice homomorphism.

6.2. Now we are going to prove a general Maligranda type inequality for positive
bilinear operators. Consider a multiplicative conic set K C RY, see 3.8. A triple of
functions (o, @1, ¢2) is called C-submultiplicative (C-supermultiplicative) on K if
K C dom(y;) (i:=0,1,2) and

01(5)@2(t) > Coo(st)  (p1(s)ea(t) < Cipo(st))

for some positive 0 < C' € R and all s,t € K. In the special case N =2 and K = IRJJ\:
these inequalities are equivalent to

e1(1, 8)p2(1,1) = Cpo(1,st), (p1(1,8)pa(1,t) < Cepp(1,st)) (0 <s,t€R).

Maligranda |31, Theorem 1] proved that if o, g, ¢ are continuous gauges on R? and
the triple (¢, o, ¢1) is C-supermultiplicative, then for any positive bilinear operator
T:(FE+F)x (E+F)— L%Q,%,n) with £ and F ideal spaces on (9,3, 1) the
inequality holds

T(o(|ol, [z1]), er(lyol, [y1])) < Co(T (| ol, [4]), T(lyol, lv2])

for all zg,yo € F and x1,y;, € F.
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6.3. Lemma. Let E/, F', and G be uniformly complete vector lattices, b : ExX F —
G be a positive bilinear operator and a positive linear operator ®, : EQF — G be
the linearization of b via tensor product, i.e., b = ®,®. Let ¢ € H, (RN, K) and
Y € (RN, K) for some cone K C RN. Then for xy,...,xx € E andy,,...,yy € F
with [b(z1,v1),...,b(zn,yn)] C K and [x1 @ yy, ..., 2y @ yy] C K we have

o(b(x1,91), - bzn,yn)) < @b(@(ﬂﬁl @Y1y, N D yN)),
V(s y1), - blax, yy) = By (d(z1 @ yr, - 2y @ yw)).-

Equalities hold whenever b is a lattice hamomorphism.

< Apply Jensen’s inequalities 5.2 with f = g = &, taking into consideration
Remarks 5.3 (2) and 5.3 (3). >

6.4. Lemma. Let F and F' be uniformly complete vector lattices, x1,...,xny € F
and yy,...,yn € E. Suppose that vy, 91,7 € 4,(RY, K), o, 01,02 € 4 (RY, K)
with a multiplicative close conic set K C RY, and the triple (g, o1, p2) and
(20,11, 19) are C-supermultiplicative and C-submultiplicative on K, respectively.
If [x1,...,zn] C K and [y1,...,yn] C K, then [z1 ®y1,..., 2y @ yn)|] C K and

o1z, TN) @O2(Y1, - un) S CPo(1 @Y1, ..., TN @ YN),
(21, xn) @Ya(yr, .. yn) > Cho(x1 @ yp, ..., TN D YN).

<Q Put uw = pi(xy,...,xzy) and v = Pa(y1, ..., yn). Let Ey and Fy be the vector
sublattices in F and F' generated by {u, z1,...,xy} and {v,y1,...,yn}, respectively.
According to [11, Corollary 4.5| Go:= Ey ® Fy is the sublattice of E ® F generated
by Ey ® Fy. Let G stands for the Gg-closure of Gy in EQF. Then G is a uniformly
complete sublattice of EQF and any real valued lattice homomorphism on Gy
extends uniquely to a real valued lattice homomorphism on G, see [8, Lemma 1.1].
Therefore, the set H of all lattice homomorphisms p : G — R with p® = o ® 7
for some o € Hom(E)) and 7 € Hom(F}) separates the points of G. The relations
[T1,...,2n] C K and [y1,...,yn] C K imply [x1 @ y1,..., 25y @ yn)] C K, since K
is multiplicative. Thus we can conclude that $o((x; ® y1,..., 2y ® yn)) exists in G
and

p(Po(x1 @y1,...,eNn QYN)) = wo(p(x1 @ Y1), ..., p(xN @ YN))

for all p € H. Now, making use of Proposition 2.6 and C-supermultiplicativity of
the triple (¢, @1, 2) we deduce

plu®v) =o(u)7(v) = pi(o(z1),...,0(@N))p2(T(¥1), ..., T(yn))
< Cpo(o(@1)7(y1), - - - o(zn)T(yn))
=Cpo((c @ T)(x1,91),- -, (0 @T) (N, YN))
= p(CPo(x1 @ y1,..., 2N QYN)).

Since H separates the points of G, we have u®@v < Cpy(z1 @y, ..., 2y Qyn)). The
second inequality is derived in a similar way. >

6.5. Theorem. Let E, F, and G be uniformly complete vector lattices, b :
E x F — G a positive bilinear operator, xy,...,xxy € FE and y1,...,yn € E.
Suppose that 1y, 11,1, € 4,(RN, K), o, 1,02 € 9.(RY, K) with a multiplicative
closed conic set K C RY | the triple (g, @1, p2) is C-supermultiplicative on K and the
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triple (1o, 11, 12) is C-submultiplicative on K. If [z, ..., xy] C K, [y1,...,yn]| C K,
and [b(x1,11),...,b(xN,yn)] C K, then

b(g/0\1<1,'1, R 7xN)7(/’52(y17' .. 7yN)) S 09/0\0<b(x17y1)7 <o 7b(xN7yN))7
b(&}\l(xlu R 7$N)7$2(y17 B 7yN)) Z C’l/p\o(b(‘rhyl)? s ,b(xN,yN))

< Let a positive linear operator ®, : EQF — G be the linearization of b via
tensor product, so that b = ®,®. Observe that all hypothesis of Lemma 6.4 are
fulfilled. Applying ®, to the inequalities from Lemma 6.4 we get

b(‘i’{l(mla e ,HTN)A%(?JL o yN)) < C‘I)b(fo(b(%,yl)? o b(rN,yN))),
b1 (w1, . xn), Ya(yr, - yn)) = COy(o(b(@1, 91), - - b(TN, YN))).

It remains to apply Lemma 6.3. >
6.6. Corollary. Let E/, F', and G be relatively uniformly complete vector lattices,

t:i= (v1,...,2zy) € EN, and v := (y1,...,yn) € FN. Let ¢ € 4,(RYK), ¢ €
4, (RN, K) with a multiplicative closed conic set K C RY and [t] U [y] C K. Then
for any positive bilinear operator b: E x F — G we have

N

D b@e,ye) <@, 2n), (Y yn)),

k=1

b(k, yi) > b((1, - 2n), Po(yn, - - Yn))-

WE

e
Il

1

< Put A(s) := s1+ -+ sy (s = (s1,...,5n)). The triples (A, ¢, ¢°) and
(A, 1,1,) are l-submultiplicative and 1-supermultiplicative, respectively, see 4.8.
Since X(ul, ...,uy) =u; + -+ + uy, we need only to apply Theorem 6.5. >

6.7. Corollary. Let E be a uniformly complete vector lattices, I’ be a Dedekind
complete vector lattice, x1,...,xy € E, and Ty,...,Tx € L~(E, F). Suppose that

¢0>¢17¢2 € <(gv(IRN)[() and ®o, P1, P2 € <(g/\(IRANa[(): the trlple (¢07§017902) is C-
supermultiplicative on K and the triple (1o, ¥1,9) is C-submultiplicative on K. If
[z1,...,2n]| C K, [y1,...,yn] C K, and [T1xq,...,Tyxy)] C K, then

@2(T1,. .. ,TN) (,/51(1'1,. .. ,l‘N)) S C@()(Tlllfl,. .. ,TNZL‘N),

-~

(
Uo(Tr, .., Tn) (U (21, - 2N)) = C@o(lel,---,TNLEN)-

< Apply Theorem 6.5 to positive bilinear operator b from E x L~ (E, F) to F
defined by b(z,T):=Tx. >

6.8. Corollary. Let E and F' be relatively uniformly complete vector lattices,
r:i= (z1,...,2ny) € EN, and T:= (T1,...,Tn) € L™ (E,F)V. Let ¢ € 4,(RY, K),
Y €9, (RY,K), and [t] U[T] C K. Then we have

N
> Tiay < @°(Th,. .., Tw) (@1, ., 2n)),

k=1

N
S Ty > Go(Th, . Ti) (@1, - an)
k=1



20 A. G. Kusraev

< Apply 6.6 to positive bilinear operator b from E x L~ (FE, F) to F' defined by
b(z,T):=Tz. >

7. Functions of Bilinear Operators

In this section we compute ¢(by, ..., by) for regular bilinear operators by, ..., by.
A partition of x € E is any finite sequence (z1,...,2,), n € N, of elements of £,
whose sum equals z. Denote by Prt(z) and DPrt(z) the sets of all partitions of z
and all partitions with pairwise disjoint terms, respectively.

7.1. Lemma. Let E, F', and G be vector lattices, by,...,by € BL"(E, F;G), and
b:= (bi,...,bn). Let p € H(RY), ¢ € H(RY), §(bi(zo,Y0): - - -, bn (w0, o)) and
¥(bi(z0,%0)s - - -, bn (0, Y0)) are well defined in G for all 0 < xy < z and 0 < yy < .
Denote p:= (x1,...,2,) € E™ and v:= (y1,...,Ym) € F™. Then the sets

o(b;x,y):=
{ZZ@ (b1 (i, y5)s - - by (T3, y5)) : nym € N, ¢ € Prt(x), n e Prt(y)},
=1 j5=1
P(b;2,y) =
{ ZZ{D\(bl(!L’u%), CI 7bN($Zay])) Ln,m € IN)? € Prt(m), U € Prt(y)}v
i=1 j=1

are upward directed and downward directed, respectively.

< Assume that (z4,...,2,) and (2], ..., 2},) are partitions of x while (y1,. .., ym)
and (v, ...,y ) are partitions of y. By the Riesz Decomposition Property of vector
lattices there exist finite double sequences (u; ;)i<n, j<ns I B4 and (v;;)i<m,i<m i

F such that

n' n ; ) ,
E oy Wik = Ti; E L Uik = Ty (z:: 1,...,n, k:= 1,...,n).

’

ZZIUN:%, Z;W:yf (ji=1,....m, L=1,...,m).

In particular, (u;g)i<n k<n’ and (Vi1)i<m, j<m/ are partition of x and y, respectively.
Taking subadditivity of ¢ into consideration we obtain

n,m
> o y;), - by ()
ij=1
n,m n';m’ m
ZZQO( b1 (Wi, v51), ZbN Uzk,%z>
i,j=1 k=1 k=1
n,m n’,m’
= 90( bl uzka (j?l))a"'7bN(ui,k7Uj,l)))
4,7=1 k=1
n,m n',m’
< (b1 (Wiks V)5 - - b (Wi, v51))-
1,j=1k,l=1
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In a similar way we get

n',;m’ nm

Z (b1 ( %yj b (g, ) < Z Z (1 (i, vj0), - -, by (Wi, V1)),

ij=1k,i=1
so that the first set is upward directed. Similarly, the second set is downward
directed. >

7.2. Lemma. Let Let F, F', and G be vector lattices with G Dedekind complete
and % be an order bounded set of regular bilinear operators from E x F' to GG. Then
for every x € E, and y € F, we have:

(sup AB)(z,y) —Sup{zzbku i, Y5) }

=1 j=1

(inf B)(z,y) = inf { Z Z bi(i ) (Tis Y }

i=1 j=1

where supremum and infimum are taken over all naturals n,m,l € N, functions
E:ALl,...,n} x{1,...,m} — {1,...,1}, partitions (xi,...,x,) € Prt(x) and
(Y1, ---,Ym) € Prt(y), and arbitrary finite collections by ..., b, € A.

< See |23, Proposition 2.6]. >

7.3. Theorem. Let E, F, and G be vector lattices with G Dedekind complete,
bi,...,bx € BL™(E,F;G), and b := (by,...,by). Assume that ¢ € J,(RY),
v e (RN, §(bi(wo,y0),- -, bn(mo,0)) and ¥(by(zo,v0), - - -, bn(T0,y0)) are well
defined in G for all 0 < zo < z and 0 < yy <y, p(b;z,y) is order bonded above, and
¥ (b; z,y) is order bounded below for allx € E andy € F,. Then §(by,...,bx) and
{D\(bl, ...,bn) are well defined in BL™(E, F;G) and for every x € E, and y € F
the representations

P(b1,- -, bn)(2,y) = sup (b; z,y),

W(by,...,bn)(z,y) = inf(b;z,y)
hold with supremum over upward directed set and infimum over downward directed
set. If E and F have the strong Freudenthal property (or principal projection
property) then Prt(z) and Prt(y) may be replaced by DPrt(x) and DPrt(y),
respectively.

< Denote by:= Aiby + -+ - + Axby for \:i=(A\q,...,An) € RY and observe that if
the set {b) : A € dp} is order bounded in BL"(E, F G), then by 4.4 @(by,...,bN)
exists in BL"(E, F';G) and §(by,...,by) = Sup{b)\ : A € Jp}. Take arbitrary A" :=
(A,...,A) € 0p (r:=1,..., ) k {1,...,n} x{1,....m} — {1,... )1}, r:=
(x1,...,2,) € Prt(z), and 9:= (y1,...,ym) € Prt(y). Making use of Lemma 7.2 and
Theorem 4.4 we deduce:

n,m N n,m
Zb)\k(w) xzvy] ZZ)\kZ])b wl)?/j = Z@(bl<xi7yj>a'"7bN(xi7yj)) S a,
i,7=1 i,j=1 s=1 i,j=1
where a is an upper bound of ¢(b; x,y). Passing to supremum over all (AL.... ),

k, ¢, and y and taking Theorem 4.4 into account we get that @(by,...,by) is well
deﬁned and @(by,...,bn)(z,y) < ¢(b;x,y). Surely, in above reasoning we could take
(x1,...,2,) € DPrt(z) provided that E has the principal projection property.
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Conversely, let f(x,y) stands for the right-hand side of the first equality. Observe
that if (Aq,...,\n) € dp and u € E,, v € Fy, then by 4.4 we have

Z)\kbk w, v) (ZAkbk) w,0) < B(bi, ... by)(u,0)

and again @(b(u,v),...,bx(u,v)) < @(by,...,bn)(u,v) by Theorem 4.4. Now, given
(1,...,2y,) in Prt(x) or DPrt(z) and (yi,...,y,) in Prt(y) or DPrt(y), we can
estimate

D B0 yy), b (@) < Pb, - b (@i ) = Blbrs - by) ()

3,j=1 3,j=1

and thus f(z,y) < @(b1,...,bn)(z,y). Thus the first equality is hold true. By Lemma
7.1 the supremum on the right-hand side of the required formula is taken over upward
directed set.

The second representation is proved in a similar way. >

7.4. Corollary. Let E, F, G, ¢, 1, by,...,by be the same as in 7.1, b :=
o(by,...,by) and b:= J(bl, ..., by). Assume that, in addition, E = F has the strong
Freudenthal property and by, ...,byx are orthosymmetric. Then for every x € E the
representations

b(z, ) = sup { ng (b1 (x4, |2|), ..., On (ziy |2]) + (21, .. 20) € DPrt(|:E|)},

b(z, 1nf{zw (b1 (s, |x|), .- b (s, |2]) = (21,00, 20) 6DPrt(|x|)},

hold with supremum and infimum over upward and downward directed sets,
respectively.

< It is sufficient to check the first formula. We can assume z € E.. Denote
by g(x) the right-hand side of the desired equality. From 7.3 we have g(z) <
?(by,...,by)(x,z). To prove the reverse inequality take two disjoint partitions of
x, say ¢ = (2,...,2)) and " := («f,...,2)), and let (xy,...,x,) € DPrt(z) be

their common refinement. Since by, ..., by are orthosymmetric we deduce

lym

Z (bl( Ly s)' ,bN(x;,x’S’))

r,s=1
= Bbi(xi,zi), .. by, ) =Y @iz, 2), ... by(wi, 7).
i=1 i=1
Passing to supremum over all ¢’ and ¢’ we get the desired inequality. >

8. Functions of Linear Operators

The above machinery is applicable to the calculus of order bounded operators.
By way of illustration compute and estimate ¢(71,...,Ty) for order bounded linear
operators 71, ..., Ty. We use the above symbols Prt(z) and DPrt(z) for the sets of
partitions and disjoint partitions of x € F ., respectively.
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8.1. Theorem. Let E and F' be vector lattices with F' Dedekind complete,
Ty,....,Txy € L*(E,F), and S:= (Ty,...,Ty). Let ¢ € £, (RY), v € 7, (RY), and
[T1,...,Tn]| is contained in dom(p) N dom(v)). If for every x € E the sets

o(Tx) = {é@(Tlxk,...,Tka) C (X, .., mp) € Prt(m)},

O(Tiz) = {kzi‘;&(mk, o Twa) : (21, ,m0) € Prt(m)}

are order bounded from above and from below respectively, then @(T},...,Ty) and

~

(T, ..., Ty) exist in L~(E, F'), and the representations

@(Tlv s ,TN)lU = Supgp(T, ZE),

~

(T, ..., Ty)x =inf(%;y)

hold with supremum over upward directed set and infimum over downward directed
set. If E has the principal projection property then Prt(x) may be replaced by
DPrt(x).

< Follows immediately from 7.1. >

8.2. REMARK. (1) Assume that E, F, T1,...,Ty, ¢, and 9 are the same as in
5.1. Then (T4, ...,Tn)x > ¢(Tix,...,Tyx) and (T, ..., Tn)x < Yp(Tiz, ..., Tyz)
for all x € E,. In particular, if RY C dom(¢) N dom(¢)) and o(Thz,...,Tyz) >
w(Nx, ..., Tyx) for all x € E, then o(Ty,...,Tn) > (11, ..., Tx).

(2) If the sets in braces at the right-hand sides of 8.1 are order bounded below
and above respectively, then ©(71,...,Ty) and (11, ...,Ty) are well defined.

(3) Assume that ¢ € #(C;[r]) and ¢(0,tq,...,tx) =0 for all (t1,...,tx) €
dom(ip). Then evidently @(x1,...,zx) € {z;}++ provided that [¢] C dom(p). This
simple observation together with 5.1 enables one to attack the nonlinear majorization
problem for wider variety of majorants ¢(77y,...,Ty), cp. |5].

8.3. Let E and F be vector lattices with E relatively uniformly complete and
F Dedekind complete. Then for Ty,..., Ty € L7 (E,F), z1,...,oy € E,, and
a,...,ay € Ry with ag +--- 4+ ay =1 we have

(T7 T (2T oayY) < (Thae)™ . (Tyxn)*N.
The reverse inequality holds provided that a; + -+ +ay =1, (=1)*(1 —a; — -+ —
ag)ag - ...cap >0 (k:=1,...,N —1), and x; > 0, f(x;) > 0 for all i with «; < 0.
< Apply 6.7 with K =RY, C =1, ¢o(t) = ¢1(t) = po(t) = 151 .. 437 >
8.4. Theorem. Let F and F' be vector lattices with F' Dedekind complete and
Ty,..., Ty € L~(E, F). Suppose that ¢ € 4,(R") and ¢ € 4,(RY) are increasing

and [Ty, ...,Ty] C dom(p) Ndom(v)). Then for every x € E the representations
hold

o(Ty, ..., Ty)x :sup{ZTkxk %y, n) < x},

N
w(Tl,...,TN):c:inf{ Terg : Yo(x,...,2N) Zsc},
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with supremum over upward directed set and infimum over downward directed set.
< Suppose that ¢(T1,...,Ty) exists and = € E,. If z1,...,2y € E, and

©°(x1,...,xny) < =z, then making use of the Bipolar Theorem, positivity of
o(Ty,...,Ty), and 6.8 we deduce

N

> Tk < o(Th, ... Tn) (¢ (21, . 2n) < (T, ... T

k=1

To prove the reverse inequality take (z1,...,7,) € Prt(z), ANk = (\F, ... \k) €
Ao = {¢° <1} (k:=1,...,n), and put u; := > ,_, Aoy If a:= (av,...,an) €
0¢° = {p < 1}, then (o, \F) < p(a)p°(A¥) < 1 and thus

N n n

N
Z%‘Uz’ = Z o Z Mgy = Z(a, My, < .
i=1 1 k=1

k=1

It follows from 4.4 that ¢°(uq,...,uy) < z.
Denote S(A\):= M7y + -+ - + ATy with \:i= (A1,..., Ay). Let f(x) is the right-
hand side of the first equality. Then

> SO @) = - T < Jf(a).

It remains to observe that (71, ..., Ty) =sup{S(\) : X\ € dp} by 4.4. >

8.5. Proposition. Let E, I, and G be vector lattices with F' Dedekind complete,
R : E — G an order interval preserving operator, T : G — F' an order continuous
lattice homomorphism, and ¢ € 5€(C, K). Assume that Sy,...,Sy € L™(E, F) and
[S1,...,9nv] C K. Then [S10oR,...,Syo R] C K and

@(Sl,...,SN)OR:@(SloR,...,SNOR).
If, in addition, G is Dedekind complete, then [T o Sy,...,T o Sy] C K and
Top(Sy,...,%)=p(ToSy,...,ToSy).

<1 Under the indicated hypotheses the operators S — S o R from L~(G, F) to
L~(E,F)and S +— T oS from L~ (E,G) to L™(E, F) are lattice homomorphisms,
see [1, Theorem 7.4 and 7.5]. Therefore, it is sufficient to apply Proposition 2.6. >
8.6. Proposition. Let E and F' be vector lattices with F' Dedekind complete.
Assume that Si,...,Sy € L~(E,F) and [Sy,...,Sy] C K. If S* denotes the
restriction of the order dual S’ to F)’, the order continuous dual of F, then

[St,...,S%] € K and
B(S1,....Sn) = 3(S:,...,S%).

< By Krengel-Synnatschke Theorem [1, Theorem 5.11| the map S — S* is a
lattice homomorphism from L~(E, F) into L™ (F,", E~), see [1, Theorem 7.6]. Thus,
we need only to apply Proposition 2.6. >

8.7. Let F denotes an ideal spaces on (€2, %, 11). Consider another measure space
(@)%, 1) and let F' be an ideal spaces on (', %, 1/). A linear operator S : E — F
is called a kernel operator with kernel k € £°(1/® p) if it admits the representation

(Sa)(s) = / k(s,t)u(t) du(t) (i € E).

Q
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More precisely, there exists a p/ ® p-measurable function k : €' x Q — R such
that for every u € E the value v = Su is the equivalence class of the function
v(s) = [, k(s,t)u(t)du(t) (s € Q). The integral is understood to be the usual
Lebesgue integral.

8.8. Proposition. Let E and F be ideal spaces over o-finite measure
spaces (0,3, ) and (V% 1), respectively. Suppose that Si,...,Sy are order
bounded kernel operators from E to F with respective kernels ki,...,ky and
[S1,...,Sn] € K. Then (ki(s,t),...,kn(s,t)) € K for ' ® p-almost all (s,t) €
 x Q and @(Sy,...,Sy) is also a kernel operator from E to F with kernel
wo (ki(),...,kn(+,+)); in symbols,

(P(S1, ..., Sn)u)(s) = /gp(k’l(s, t), ..., kn(s,t))u(t)du(t) (ue€FE).
Q

< The set ™~ (E, F) of order bounded kernel operators from E into F' is a band
in LY(E, F). The map o sending every operator from .#~(E, F) to the equivalence
class of its kernel is a lattice isomorphism of .#~(E, F) onto some order ideal in
LO(u® ). Thus, [ky,..., ky] C K and

O'()/O\(Sl, .. .,SN) = (,/O\(]P%l, .. .,/;ZN)

by Proposition 2.6. According to Proposition 3.5 there exists a measurable set 2y C
' x Q such that p/@ (Y x Q\ Q) =0, [k1(s,t),...,kn(s,t)] C K for all (s,t) €
Qp, and a(iﬁ, . /%N) is the equivalence class of the measurable function (s,t) —
o(ki(s,t),...,un(s,t) ((s,t) € Q). >

9. Continuous and measurable bundles of Banach lattices

Now, we consider an instance of homogeneous functional calculus on vector
lattices of continuous and measurable sections of bundles of Banach lattices is also
considered. All necessary information on continuous and measurable Banach bundles
can be found in [14, 15] and [19].

9.1. Let @ be a topological space. A bundle of Banach lattices over () is a
mapping 2 defined on @ and associating a Banach lattice 27 := 2 (¢) with every
point ¢ € Q. The value 2, of a bundle 2" is called its stalk over ¢. A mapping s
defined on a nonempty set dom(s) C @ is called a section over dom(s) if s(q) € 2,
for each ¢ € dom(s). A section s is called almost global, or global, whenever its
domain dom(s) is respectively a comeager subset of @) or the whole of Q.

Let S(Q,Z") stands for the set of all global sections of 2~ endowed with
the structure of a vector lattice by letting u < v < (Vg € Q)u(q) < v(q) and
(au+PBv)(q) = aulq)+pv(q) (¢ € Q), where o, 5 € R and u,v € S(Q, Z"). For each
section s € S(Q, Z") we consider its point-wise norm |||s| : ¢ — [|s(q)|l, (¢ € Q).

A set € C S(Q, Z") of global sections of a bundle of Banach lattices 2~ over @
is called a continuity structure in 2 if the following conditions are met:

(1) % is a vector sublattice of S(Q, Z);

(2) for each s € €, the function |||s||| is continuous;

(3) € is stalkwise dense in 27, i.e. for each ¢ € @, the set {s(q) D s € %} is
dense in the stalk 2.
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A continuous bundle of Banach lattices over ) is a pair (2, %), where 2" is a
bundle of Banach lattices over ) and % is a fixed continuity structure in 2. In the
sequel we shall write simply 2" instead of (2", %).

A section u € S(Q, Z) is called continuous at ¢y € @ if the function ||u — ¢|| :
q — |lu(q) — s(q)lly (¢ € Q) is continuous at gy for every section s € €. If u is
continuous at each gy € dom(u), then u is said to be continuous section (see [14])
and [19] for more details).

9.2. Suppose that 2" is a continuous bundle of Banach lattices over an extremally
disconnected compact space (). Let u be a continuous section of 2" defined on a
dense subset D C ). Just as in 3.2 denote by D the totality of all points in Q at
which u has limit and put (q) := lim, ., u(p) for all ¢ € D. Then the set D is
comeager in ) and the section @ is continuous. The section u is called the mazimal
extension of u and denoted by ext(u). A continuous section u defined on a dense
subset of @ is said to be extended, if ext(u) = u. Denote by C(Q, Z") the space of
all extended almost global sections of the bundle 2 .

The set Coo(Q, Z) is endowed by the structure of a lattice normed vector lattice
over Cy(Q) in the following way. If A, u € R and u,v € C(Q, Z"), then the sum
Au + p is defined to be ext(Au|p + pv|p), and v < v means hat u(t) < v(t) for all
q € D, where D = dom(u) Ndom(v). The maximal extension ext(||u[]) € Coo(Q) of
the continuous function ||ul| is taken as the norm |u| of a section u € Coo(Q, Z).
The notation |u| for the function ext(u) is also used if the continuous section w is
defined on an arbitrary dense subset of (). The space C(Q, Z") is a module over
Coo(Q), where eu:= ext(e|dom(u) - U|dom(e) for € € Coo(Q) and u € Coo(Q, Z7). If E is

an order ideal in Co(Q) then we assign
E(Z)={ueCx(Q, Z): |ul € E}.

It can be easily checked that F(.2") is a uniformly complete vector lattice.

9.3. Theorem. Let 2" beauy,...,uy € Coo(Q, Z") and [uy, ..., un| C K. Then
there exists a comeager subset Qg C @ such that @y C dom(uy) N --- N dom(uy),
[u1(q), ..., un(q)] C K for every q € Qo, and p(uq,...,uy) € Coo(Q, Z") is the
maximal extension of the continuous section q — p(ui(q),...,un(q)) (¢ € Qo), ie.

Plur, . un)(q) = @(ua(q), -, un(q)) (g € Qo).

<1 The proof is a dully modification of the reasoning in 3.3. >

9.4. A continuous Banach bundle 2" over an extremal compact space () is called
ample (or complete if every bounded almost global continuous section of it can be
extended to a global continuous section. Put

Cp(@, 2):={u € ClQ, 2) : lul € C(Q)}.

Let C(Q, Z") denote the set of all global continuous sections of Z". Then a bundle 2
is ample if and only if C»(Q, 27) = C(Q, Z).

9.5. Let G be a universally complete vector lattice with a fixed order unit and
the corresponding structure of a semiprime f-algebra. A duality pair in G is a pair
(E, D) of order dense ideals E' and D in G such that the ideal E*:= {e* € G : (Ve €
E)ee* € D} is also order dense in G.

Take a lattice-normed space X with |X|++ = E. The operator-dual space X* is
defined as follows. An operator z* : X — D belongs to X* if and only if there exists
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an element 0 < ¢ € E* such that
(x,2*):=a2"(z) <c|z] (xe€X).

The least element 0 < ¢ € E* satisfying the indicated relation exists. This element
is denoted by |z*|. The mapping z* — |x*| is an E*-valued norm in X* and
the following inequality holds:

(x,2*) <|z| || (z € X).

Two lattice normed lattices X and Y over E are said to isometrically isomorphic if
there exists a lattice isomorphism ¢ of X into Y such that |i(z)| = |z| for all z € X.

9.6. Theorem. Let 2 be an ample continuous bundle of Banach lattices,
Si,...,Sy € E(Z)*, and [Sy,...,SNy| C K. Then there exist vy, ..., vy € E*(Z")
and a comeager subset )y C () such that

(1) Qo C dom(uy) N---Ndom(uy);

(2) [u1(q), --.,un(q)] C K for every q € Qo;

(3) for every p € H#(C,K) the map q — @(vi(q),...,vn(q)) (¢ € Qo) is a
continuous section of 2 over Qo, and for all u € E(Z") the representation holds:

(2(S1, -, Sn) (W) (q) = (u(q), 2(v1(q), ..., vn(q))) (g € Qo);
(4) |2(S1, ... SW)| (@) = |8(vi(q), - - vn (@)l 27y (g € Qo).

In particular, the lattice normed lattice E(Z2)* is isometrically isomorphic to
E*(Z"), where the isometric isomorphism is performed by associating with each
section v € E*(Z”) the operator u — (u,v) from E(Z") to D, see [15]. (Here (u,v)
denotes the coset of the function (ug(-),vo(+)) with ug € v and vy € v.)

9.7. Now consider a nonzero measure space (€2, 3, ) with the direct sum property.
Let 2" be a bundle of Banach lattices over €. Denote by S.(€2, Z") the set of all
sections of 2~ defined almost everywhere on 2. A set of sections ¢ C S.(2, Z) is
called a measurability structure on €, if it satisfies the following conditions:

(a) A1 4+ Aacg € € and |¢| € € for all A\;, Ay € R and ¢, ¢y, ¢ € E,
(b) the point-wise norm ||c[|| : © — R of every element ¢ € € is measurable;
(c) the set € is stalkwise dense in 2.

If € is a measurability structure in 2" then we call the pair (2", %) a measurable
bundle of Banach lattices over €. We shall usually write simply 2" instead of (2", %).

Let (Z7,%) be a measurable bundle of Banach lattices over 2. We say that
s € S.(Q,Z) is a step-section, if s = > [Agleg for some n € N, Ay,..., A, € ¥
and ¢p,...,¢, € €. A section u € S_(Q, Z") is called measurable if, for every
L € ¥ with v(L) < 400, there is a sequence (s,)nen of step-sections such that
Sp(w) — wu(w) for almost all w € L. The set of all measurable sections of 2~ is
denoted by Z°(Q, %, u, ) or L%, Z°) for brevity.

9.8. Suppose that 2 is a measurable Banach bundle over ). Consider the
equivalence relation ~ in the set Z°(u, 2°): u ~ v means that u(w) = v(w)
for almost all w € €. The coset containing v € £°(u, 2") is denoted by .
The quotient set L%(u, Z7) :== LO(Q, 2, pu, ) := ZL%(u, )/~ is a vector lattice:
(su+tv) = (su+tv)~ and & < 0 < u(w) < v(w) for almost all w € , where s,t € R
and u,v € Z%u, Z). For every u € £°(u, )/~ we may define its (vector) norm
lul:= |u]:= ||ul|~ € L°(u). Tt is clear that the vector lattice L°(u, 2) is uniformly
complete.
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9.9. Let 2" be a measurable bundle of Banach lattices over 2. Consider a lifting
p:L>®(Q) — £>°(Q). We call a mapping pg : L®(u, Z°) — L (u, ') a lifting of
L>(u, Z°) associated with p if, for all u,v € L>(§2, Z7) and e € L>(Q2) the following
relations hold:

)
) |pa ()] = p(lul);

g pa(u+v) =pay(u) + pa(v);
)

02 (w)| = por (Ju]);
pa(eu) = p(e)pa (u);
6) the set {pa(u) :u € L*(Q, 27)} is stalkwise dense in 2.

We say that 2" is a liftable measurable bundle of Banach lattices provided that
there exists a lifting of L>°(Q2) and a lifting of L>°(2, .Z") associated with it. The
following result is due to A. E. Gutman, see [15].

9.10. Theorem. Let 2 be a liftable measurable bundle of Banach lattices
over Q). Then there exists (a unique) liftable measurable bundle of Banach lattices
2 such that
(1) at each point w € Q, the stalk 2"'(w) is a Banach sublattice of Z (w)’;
(2) ifue L% u, Z) and v’ € L°(u, '), then (u,u'y € L°(u);

(3) for all u € L>°(u, Z) and v € L>®(u, Z"), we have p((u,u')) =
(pa(u),pa(u)), where py and py are respective liftings of 2~ and 2" associated
with p;

(4) if a bounded mapping v’ : w — u/(w) is such that, for every u € L (u, Z)
the function (u,u') is measurable and p({u,u’)) = (py (u),u’), thenu’ € L>(u, Z").

9.11. Theorem. Let Sy,...,Sy € E(Z)* e = |5 + --- + |Sn], and
[S1,...,Sn] C K. Then there exist measurable sections vy, ..., vy € ZL°(2Z") such
that

(1) 0y,...,0n8 € EX(Z);

(2) [n1(w),...,vn(w)] C K for every w € Q;

(3) for every p € H(C,K) the map w — @(vi(w),...,vny(w)) (w € Q) is a
measurable section of 2" and for allu € E(Z") and w € ) the representation holds:

pe(B(S1,- -, Sn) () (w) = (u(w), P11 (W), ..., vn (W) (w € Q);

(4) for every ¢ € #(C,K) the map w — [|@(vi(w),...,ox(W))|| (w € Q) is
measurable and the corresponding coset coincide with |{5(Sl, ce SN)l.

10. Functions of Dominated Operators

In this section we prove two representation theorems for @(7i,...,Ty) with
dominate operators 17, ..., Ty.

10.1. At first, we introduce a vector lattice F,,(X’) of weakly measurable vector-
valued functions. Let (€2,%, 1) be a measure space with the direct sum property,
E an order dense ideal in L°(Q, %, ), and X a Banach lattice. An X'-valued
function u defined almost everywhere on €2 is called o (X', X)-measurable or simply
X-measurable if, for each x € X, the function t — (x,u(t)) (¢t € §2) is measurable.
Denote the coset of the last function by (z, u), so that (u, z) € L°%(u). Let £2(Q, X)
be the set of X-measurable vector-valued functions u :  — X’. We say that X-
measurable vector-functions u and v are X-equivalent and write u ~ v if, for each
x € X, the measurable functions (z,u(-)) and (z,v(-)) are equal almost everywhere.
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Consider the quotient set LY (u, X'):= LY (Q, 3, u, X') := Z£2(Q, X')/ ~ and define
vector space structure in it by setting au + fv := (au + (v)~. For a coset u €
LY (1, X') with u € Z(Q, X’) put (z,u):= (z,u). The set R(u):= {(u,2): z € Z,
|2|] < 1} is order-bounded in L°() and we can assign

|2] := sup{(x,u> creX, |z < 1},
where the supremum is taken in L°(£2, 3, 11). Define now the set
E,(X"):={ue L) (u,X'): |u] € E}.

It is easy to verify that for every order ideal E C L%(u) the space E,(X’) endowed
with the operations and E-valued norm |-| induced from LY (Q, 3, u, X”) is a Banach—
Kantorovich space over L°(Q, %, i) [19].

10.2. Let p is a lifting of L>(u) and p(€) = e for some 0 < e € £°(u). Given
g € Z°(u), defined the function g/e by (g/e)(w) = 0 if e(w) = 0 and (g/e)(w) =
g(w)/e(w) if e(w) > 0. Put

L) ={g9€ L) : glee L=},
L ()= £2(n)/ ~,

pe(§):=eplgle) (g€ 2>()

Then L°(p) is an ideal space on (€2, X, ) and p, is a lattice isomorphism of L2°(1)
into £>°(u). Moreover, p.(g) € g for any g € L2(u) and p.(€) = e.

Let (g,) is an order bounded subset of Z>° and let p.(g.) = g, for every a. Then
the point-wise supremum ¢(t) = sup,{ga(t)} is measurable and g = sup g, in L°(yu).

10.3. We now recall two types of dominated operators, see [19]. Let X be a Banach
space and E an ideal space. An operator S : X — FE is dominated if the image of
the unit ball in X is order bounded in E. The element |S| defined as

151 = sup{[Sal : = € X, o] < 1}

is called the abstract norm of S. The linear space of all dominated operators M (X, E)
is denoted also by L4(X,F) and is called the space of operators with abstract
norm. If X is a Banach lattice then M (X, E) is a Dedekind complete vector lattice.
Actually, the exact dominant is presented by the mapping ¢t — ¢ |S] (t € R).
An operator S : E — Y is dominated if there exists a positive functional e* on F
such that
[Tell < (el e*) (e € E).

The exact dominant is calculated as follows:

n

|T|e:sup{2||Tek||: €1,...,en € By, Zek:e, nE[N} (e € EL).
k=1

k=1

10.4. Theorem. Let X be a Banach lattice, E an ideal space on (2, %, i), and
S € M(X, E) with ¢:= |S| for some e € £°(u). Then there exists an X -measurable
function v : Q — X' such that
(1) v € B, (X');
(2) pe(Sz)(w) = (x,v(w)) for all z € X and w € Q;
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(3) the function w — |jv(w)|| (w € Q) is measurable and the corresponding
coset coincides with |S|;

(4) the function w — |v(w)| (w € Q) is X-measurable and for every x € X we
have p.(|S|z)(w) = (z,|v(w)|) for almost all w € §.

< Define v : Q@ — X' by (z,u(w)) = pe(Sz)(w) (x € X, w € Q). It is well known

that v obeys (1)—(3) for any Banach space X, see [3, Theorem 2.1]. Let X be a
Banach lattice and 0 < x € X. Then [S|z = supy<|y<, S(a). According to 10.2
the point-wise supremum g, of the family ({(a,v(w)))o<|a|<s is measurable and the
coset of g, is equal to |S|z. It remains to observe that g, (w) = (z, |v(w)|) for every
wel >

10.5. REMARK. If we deal with equivalence classes of measurable functions
instead of measurable functions, then we have the following simple representation

result: There exists a norm reserving lattice isomorphism ¢ : S — v := ¢(S5) of
M(X,E) onto E,(X’) such that Sz = (x,v) (r € X), see [3, Theorem 2.2|.
As an easy corollary to this fact we get the representation @(Si,...,Sy)xr =

(,p(vi,...,vy)) (z € X) for any finite collection Si,...,Sy € M(X, E), where
v;:= 1(5;). However, we have to work with individual functions if we want to describe
explicitly @(vy,...,vy) or at least |v| € E,(X). The choice of a representing
function v € v is not suitable for this purpose. Indeed, by 10.4 (2) there is an
X-measurable function vy : @ — X such that p.({(z,v))(w) = (x,vo(w)). At
the same time for each x € X we have (x,vp(w)) = (z,|v(w)|) for almost every
w € Q according to 10.4 (4). This problem disappear if X’ have the Radon-Nikodym
property, since in this event E,(X’) = E(X’) and, if v is a representing function
for S, then |v| : w — |v(w)| is a representing function for |S|, i.e vy and |v| are
equal almost everywhere. But for general X it is not true and another tool should
be involved. Such tool was invented by A.E.Gutman in [15]: the spaces F(X) and
E(X'") are representable as the spaces of measurable sections of liftable measurable
Banach bundles. An easy modification of Gutman’s approach covers the case of
vector lattices.

10.6. Theorem. Let X be a Banach lattice and (§2, X, 1) a measure space with
the direct sum property. There exists a liftable measurable bundle of Banach lattices
2 = (2 (w))weq over §, unique to within a p-isometry, and such that if 2" :=
(2" (w))weq is the dual measurable Banach bundle, than

(1) X is a Banach sublattice of each stalk 2 (w) and Z"'(w) is a Banach
sublattice of Z (w)" for all w € §2;

(2) the respective liftings py and pg+ of 2 and £ are module preserving,
are associated with p, and p4 (¢) = ¢ for all constant functions ¢ : Q — X;

(3) for every section u € £°(Q, Z") the function u coinciding with u on
u (X)) and vanishing on Q \ u™'(X) is contained in Z°(u, X);

(4) for every section v € Z°(u, Z"') the function vy : w +— v(w)|x from Q to
X" is contained in L2 (u, X');

(5) the mapping sending the coset of v € £°(u, Z") to the coset of u €
LO(u, X) is a lattice isomorphism and an isometry of L°(u, 27) onto L°(u, X);

(6) the mapping sending the coset of v € £°(u, ') to the coset of vx €
LY, X") is a lattice isomorphism and an isometry of L°(u, 27') onto L2 (u, X).

< For an arbitrary Banach space X this fact was established by A.E.Gut-
man [15]. Consider the trivial Banach bundle 2, : w — X and let the totality
of constant functions ¢ : {2 — X be taken as the measurability structure ¢ of 2.
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Then Z; can be densely embedded into a liftable measurable Banach bundle 2 .
I. G. Ganiev [13, Theorem 2.1| observed that if X is a Banach lattice then then
(since the measurability structure is a vector lattice) 2™ is a measurable bundle
of Banach lattice with the lifting p, associated with p; moreover, p, is module
preserving. According to Theorem 10.4 E,,(X’) is a vector lattice. At the same time
Z is the representing measurable Banach bundle for the space E,,(X’) and thus is
a measurable bundle of Banach lattices and p 4 is module preserving. It remains to
observe that the linear isometries indicated in (5) and (6) are order isomorphisms if
X is a Banach lattice. >

We say that (27, Z") is a representing pair of measurable Banach bundles for
(E(X), Ew(X")).

Now we are ready to prove our representation result for @(Si,...,Sy) with
Si,..., Sy € M(X,FE). In the sequel we put p(u;(w),...,un(w)) = 0 whenever
up, .. uy € L%w, X') but $(ur(w),. .., un(w)) cannot be correctly defined in X,
i.e. [uy,...,uy] is not contained in K.

10.7. Theorem. Let X be a Banach lattice, E an ideal space on (£, %, 1), and
(2, Z") a representing pair of measurable Banach bundles for (E(X), E,(X")).
Consider p € A (RY,K) and Sy,...,Sy € M(X,E) with [Sy,...,Sy] C K and
put e:=|S1|+ -+ |Snl, S:= @(S1,...,Sn). Then there exist measurable sections
Uy, ..., uy € Z%Q, 2" such that

(1) ﬂla s 761\7 € E(‘%/)J

(2) [u1(w),...,uy(w)] C K for all w € Q;

(3) the function w — @(uy(w), ..., unx(w)) (w € Q) is a measurable section of
2" and for all xt € X and w € §) we have

pe(S)(W) = (2, P(ur (W), .., un (W)));

(3) the function w — ||@(u1(w), ..., un(w))||27w) (w € Q) is measurable and
the corresponding coset coincides with |S].

< Theorems 10.4 and 10.5 imply that there exists a lattice isomorphism ¢ of
M(X,E) onto E(Z") such that for every S € M (X, E) we have Sz = (z,:(S5)),
where = stands for the coset of the constant function w — z (w € Q). Put
LE (1, X):={ue L% (u, X) : |Jul € LE(u)} and consider the corresponding spa-
ce of X-measurable vector functions Z¢(u, X’) = J{u : u € L (u, X"} If
u € L¢(u, X'), then |p.({x,u))| < ||z|le for all z € X and the vector function
w = pe((,u)) € X lie in Z(u, X'). Thus, we can define an operator p, from
Le(u, X') to Z5(u, X') by putting (z,p.(u)) = pe({xz,u)) for all z € X and
u € L (X'). In view of 10.4 p, is a linear operator; moreover, p,(u) € u and
Pe(gu) = p(g)p.(u) for all u € L7 (n, X) and g € L>(u).

It follows from 10.4(4) that 7. (|Ju])(w) = [p.(u)(w)| for all u € LS (u, X)
and w € Q. Therefore, L := p,(LS (1, X)) is a vector sublattice of the vector
lattice [[,cq #Z”(w) with the point-wise ordering and p, is a lattice isomorphism
of Lt (i, X) onto L. In particular, L is a uniformly complete vector lattice. Put
h:=7p, 0t and u;:= h(S;) (i:=1,...,N). Clearly, u,...,uy € Z5(X’) and thus
Uy, ...,uy € LS (X'") C E,(X'). By Proposition 2.6 [uy,...,uy] C K and

pe((ﬁ(Sl, - ,SN)x) = pe((x, L(p(Sy,. .. ,SN))))
= (z,h(@P(S1,...,5N))) = (z,P(uq, ..., un)).
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For any w € ) define a lattice homomorphism & : L — 27(w) by @(v) := v(w).
Again by Proposition 2.6 we have [uj(w),...,uy(w)] C K and O(p(uy,...,ux)) =
P(v1(w),...,vx(w)) from which we have

pe(P(S1, ..., Sn)z) (W) = (z,P(v1(w), ..., on(W))).

Now it is clear that the function @(u(-),...,un(+))) is X-measurable, the function
lp(ui(:), ..., un(+))| is measurable, and |S] is the coset of [|@(uy(-),...,un(-))|. >
10.8. Theorem. Let X be a Banach lattice, E an ideal space on (€, %, ) with

point separating dual E}’, F' an order dense ideal in E, and (2", Z') a representing
pair of measurable Banach bundles for (E(X), E,(X")). Let the dominated operators
Si,...,Sy € Mp(E,X") with [S,...,Sy| C K are given, and S:= §(S1,...,Sn).
Then there exist measurable sections uy, ... ,uy € £°(Q, Z") such that

(1) wy,...,uy € F(Z);

(2) [w1(w),...,uy(w)] C K for all w € Q;

(3) for every ¢ € (RN, K), the function w — P(u1(w), ..., uy(w)) (w € Q)
is a measurable section of 2" and the representation holds

(x,S(e)) = /Qe(w)<:1:, Pur(w),...,uy(w)))du(w) (e€ E, x € X);

(4) the function w — ||p(uq(w), ..., un(w))| (w € Q) is measurable and
151 (e) = /Qe(W)H@(ul(w)’-~-auN(w))Hdu(W) (e € E).

< For any Banach space X the mapping which sends a dominated operator
S € Mp(E,X') to the restriction h(S):= S’|x of its adjoint S’ : X" — F to X is
an isomorphism of M(E, X') onto M (X, F); moreover, |S| = |h(S)| for all S, see
[4, Theorem 3.3|. It remains to observe that if X is a Banach lattice, then h is also
a lattice isomorphism and apply Theorem 10.5. >
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